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Abstract. As cloud computing becomes more and more prevalent, there
is increased interest in mitigating attacks that target hypervisors from
within the virtualized guest environments that they host. We present
VDF, a targeted evolutionary fuzzing framework for discovering bugs
within the software-based virtual devices implemented as part of a hyper-
visor. To achieve this, VDF selectively instruments the code of a given
virtual device, and performs record and replay of memory-mapped I/O
(MMIO) activity specific to the virtual device. We evaluate VDF by
performing cloud-based parallel fuzz testing of eighteen virtual devices
implemented within the QEMU hypervisor, executing over two billion
test cases and revealing over one thousand unique crashes or hangs in
one third of the tested devices. Our custom test case minimization algo-
rithm further reduces the erroneous test cases into only 18.57% of the
original sizes on average.
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1 Introduction

As cloud computing becomes more prevalent, the usage of virtualized guest sys-
tems for rapid and scalable deployment of computing resources is increasing.
Major cloud service providers, such as Amazon Web Services (AWS), Microsoft
Azure, and IBM SoftLayer, continue to grow as demand for cloud computing
resources increases. Amazon, the current market leader in cloud computing,
reported that AWS’s net sales exceeded 7.88 billion USD in 2015 [2], which
demonstrates a strong market need for virtualization technology.

This popularity has led to an increased interest in mitigating attacks that tar-
get hypervisors from within the virtualized guest environments that they host.
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2 A. Henderson et al.

Unfortunately, hypervisors are complex pieces of software that are difficult to test
under every possible set of guest runtime conditions. Virtual hardware devices
used by guests, which are hardware peripherals emulated in software (rather than
directly mapping to physical devices on the host system), are particularly com-
plex and a source of numerous bugs [3–6]. This has led to the ongoing discovery
of vulnerabilities that exploit these virtual devices to access the host.

Because virtual devices are so closely associated with the hypervisor, if not
integrated directly into it, they execute at a higher level of privilege than any
code executing within the guest environment. They are not part of the guest
environment, per se, but they are privileged subsystems that the guest environ-
ment directly interacts with. Under no circumstances should activity originating
from within the guest be able to attack and compromise the hypervisor, so effec-
tively identifying potential vulnerabilities in these virtual devices is a difficult,
but valuable, problem to consider. However, these virtual devices are written by
a number of different authors, and the most complex virtual devices are imple-
mented using thousands of lines of code. Therefore, it is desirable to discover
an effective and efficient method to test these devices in a scalable and auto-
mated fashion without requiring expert knowledge of each virtual device’s state
machine and internal details.

Such issues have led to a strong interest in effectively testing virtual device
code [9,28] to discover bugs or other behaviors that may lead to vulnerabilities.
However, this is a non-trivial task as virtual devices are often tightly coupled
to the hypervisor codebase and may need to pass through a number of device
initialization states (i.e. BIOS and guest kernel initialization of the device) before
representing the device’s state within a running guest system.

Evolutionary fuzzing techniques (e.g., AFL [38]) has gained its popularity
recently for its effectiveness in discovering crashes and hangs. It is widely used
in industry, and most finalists in the DARPA Cyber Grand Challenge used it
for vulnerability discovery. Several academic research papers soon appeared to
further improve the effectiveness of evolutionary fuzzing, such as AFLFast [21],
VUzzer [33], Driller [35], and DeepFuzz [22]. While these efforts greatly improve
the state-of-the-art, they aim at finding defects within the entire user-level pro-
gram, and cannot be directly applied to find bugs in virtual devices, for several
reasons. First of all, the fuzz testing must be targeted at specific virtual device
code, which is a rather small portion of the entire hypervisor code base. It must
be in-situ as well, as virtual devices frequently interact with the rest of the
hypervisor code. Last but not least, it must be stateful, since virtual devices
need to be properly initialized and reach certain states to trigger defects.

To address these unique challenges, we propose Virtual Device Fuzzer (VDF),
a novel fuzz testing framework that provides targeted fuzz testing of interesting
subsystems (virtual devices) within complex programs. VDF enables the testing
of virtual devices within the context of a running hypervisor. It utilizes record
and replay of virtual device memory-mapped I/O (MMIO) activity to create
fuzz testing seed inputs that are guaranteed to reach states of interest and ini-
tialize each virtual device to a known good state from which to begin each test.
Providing proper seed test cases to the fuzzer is important for effective exploring
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 3

the branches of a program [25,34], as a good starting seed will focus the fuzzer’s
efforts in areas of interest within the program. VDF mutates these seed inputs
to generate and replay fuzzed MMIO activity to exercise additional branches of
interest.

As a proof of concept, we utilize VDF to test a representative set of eighteen
virtual devices implemented within the QEMU whole-system emulator [19], a
popular type-2 hypervisor that uses a virtualized device model. Whether QEMU
completely emulates the guest CPU or uses another hypervisor, such as KVM [10]
or Xen [18], to execute guest CPU instructions, hardware devices made available
to the guest are software-based devices implemented within QEMU.

In summary, this paper makes the following contributions:

– We propose and develop a targeted, in-situ fuzz testing framework for virtual
devices.

– We evaluate VDF by testing eighteen QEMU virtual devices, executing over
2.28 billion test cases in several parallel VDF instances within a cloud envi-
ronment. This testing discovered a total of 348 crashes and 666 hangs within
six of the tested virtual devices. Bug reports and CVEs have been reported
to the QEMU maintainers where applicable.

– We devise a testcase minimization algorithm to reduce each crash/hang test
case to a minimal test case that still reproduces the same bug. The average
test case is reduced to only 18.57% of its original size, greatly simplifying the
analysis of discovered bugs and discovering duplicate test cases that reproduce
the same bug. We also automatically generate source code suitable for repro-
ducing the activity of each test case to aid in the analysis of each discovered
bug.

– We analyze the discovered bugs and organize them into four categories: excess
host resource usage, invalid data transfers, debugging asserts, and multi-
threaded race conditions.

2 Background

Within QEMU, virtual device code registers callback functions with QEMU’s
virtual memory management unit (MMU). These callback functions expose vir-
tual device functionality to the guest environment and are called when specific
memory addresses within the guest memory space are read or written. QEMU
uses this mechanism to implement memory-mapped I/O (MMIO), mimicking
the MMIO mechanism of physical hardware.

We have identified a model for guest activity that attempts to attack these
virtual devices:

1. The virtual device is correctly instantiated by the hypervisor and made avail-
able to the guest environment.

2. The virtual device is correctly initialized via the guest’s BIOS and OS kernel
and is brought to a stable state during the guest boot process. Any needed
guest kernel device drivers have been loaded and initialized.
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4 A. Henderson et al.

3. Once the guest boots, the attacker acquires privileged access within the guest
and attempts to attack the virtual devices via memory reads/writes to the
MMIO address(es) belonging to these virtual devices.

Unfortunately, it is non-trivial to perform large-scale testing of virtual devices
in a manner analogous to this model. The read/write activity would originate
from within the guest environment, requiring the guest to completely boot and
initialize prior to performing a test1. Because any read/write to a virtual device
control register may change the internal state of the device, the device must be
returned to a known good “just initialized” state prior to the start of each test.

While utilizing virtual machine (VM) state snapshots to save and restore the
state of the guest is a potential solution, the time required to continually restore
the state of the guest to a known good state makes this approach inefficient for
large-scale testing. Consider the megabytes of system state data (guest RAM,
CPU state, and device state and internal cache storage) required to restore a
running VM to a known state. Even when ignoring the time required to retrieve
such state information from secondary storage, megabytes of data within the
snapshot must still be unserialized and placed into hypervisor data structures
prior to the start of each test.

2.1 Understanding Guest Access of Virtual Devices

The flow of activity for virtual device access from within QEMU is shown in
Fig. 1. This figure shows a KVM-accelerated QEMU hypervisor configuration.
The guest environment executes within QEMU, and the virtual devices are pro-
vided to the guest by QEMU. CPU instruction execution and memory accesses,
however, are serviced by the KVM hypervisor running within the host system’s
Linux kernel. A request is made from a guest process (a) and the guest kernel
accesses the device on the process’s behalf (b). This request is passed through
QEMU’s KVM interface to the KVM kernel module in the host’s kernel. KVM
then forwards the request to a QEMU virtual device (c). The virtual device
responds (d) and the result is provided to the guest kernel (e). Finally, the guest
process receives a response from the guest kernel (f).

Unlike the standard 0–3 ring-based protection scheme used by x86 platforms,
virtualized systems contain two sets of rings: rings 0 through 3 on the host, and
rings 0’ through 3’ on the guest. The rings within the guest are analogous to
their counterparts on the host with one exception: the highest priority guest ring
(ring 0’) is at a lower priority than the lowest priority ring on the host (ring 3).
While a guest environment may be compromised by malicious software, it is still
safely contained within a virtualized environment. However, if malware were to
compromise the hypervisor and gain host ring 3 privileges, it would effectively
“break out” of the virtualization and gain the opportunity to attack the host.

1 QEMU provides the qtest framework to perform arbitrary read/write activity with-
out the guest. We discuss qtest, and its limitations when fuzz testing, in Sect. 3.
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 5

Fig. 1. Device access process for a device request originating from inside of a
QEMU/KVM guest. Note that the highest level of privilege in the guest (ring 0’)
is still lower than that of the QEMU process (ring 3).

2.2 Understanding Memory Mapped I/O

Both physical and virtual peripherals provide one or more registers that control
their behavior. By accessing these control registers, the hardware is instructed
to perform tasks and provide information about the current state of the device.
Each device’s control registers are organized into one or more register banks.
Each register bank is mapped to a contiguous range of guest physical memory
locations that begin at a particular base address. To simplify interaction with
these control registers, the registers are accessed via normal memory bus activity.
From a software point of view, hardware control registers are accessed via reads
and writes to specific physical memory addresses.

The x86 family of processors is unique because it also provides port I/O-
specific memory (all memory addresses below 0x10000) that cannot be accessed
via standard memory reads and writes [29]. Instead, the x86 instruction set pro-
vides two special I/O-specific instructions, IN and OUT, to perform 1, 2, or 4
byte accesses to port I/O memory. Other common architectures, such as Alpha,
ARM, MIPS, and SPARC, do not have this port I/O memory region and treat all
control register accesses as regular memory-mapped I/O. For simplicity in our
discussion, we use port-mapped I/O (PMIO) and memory-mapped I/O inter-
changeably throughout this paper.

Figure 2 shows where MMIO devices are mapped in guest physical memory on
x86-based systems. PCI-based PMIO mappings occur in the addresses ranging
from 0xC000 through 0xFFFF, with ISA-based devices mapped into the sub-
0xC000 range. PCI devices may also expose control registers or banks of device
RAM or ROM in the PCI “hole” memory range 0xE0000000-0xFFFFFFFF.

While some ISA devices are historically mapped to specific addresses (for
example, 0x3F8 for the COM1 serial port), other ISA devices can be configured
to use one or more of a small set of selectable base addresses to avoid conflicts
with other devices. PCI devices are far more flexible in the selection of their
address mapping. At boot, the BIOS queries the PCI bus to enumerate all PCI
devices connected to the bus. The number and sizes of the control register banks
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6 A. Henderson et al.

Fig. 2. The x86 address space layout for port- and memory-mapped I/O.

needed by each PCI device are reported to the BIOS. The BIOS then determines
a memory-mapping for each register bank that satisfies the MMIO needs of all
PCI devices without any overlap. Finally, the BIOS instructs the PCI bus to
map specific base addresses to each device’s register banks using the PCI base
address registers (BARs) of each device.

However, PCI makes the task of virtual device testing more difficult. By
default, the BARs for each device contain invalid addresses. Until the BARs
are initialized by the BIOS, PCI devices are unusable. The PCI host controller
provides two 32-bit registers in the ISA MMIO/PMIO address space for con-
figuring each PCI device BAR2. Until the proper read/write sequence is made
to these two registers, PCI devices remain unconfigured and inaccessible to the
guest environment. Therefore, configuring a virtual PCI-based device involves
initializing both the state of the PCI bus and the virtual device.

3 Fuzzing Virtual Devices

3.1 Evolutionary Fuzzing

Fuzzing mutates seed input to generate new test case inputs which execute new
paths within a program. Simple fuzzers naively mutate seed inputs without any
knowledge of the program under test, treating the program as a “black box”.
In comparison, evolutionary fuzzing, such as AFL [38] can insert compile-time
instrumentation into the program under test. This instrumentation, placed at
every branch and label within the instrumented program, tracks which branches
have been taken when specific inputs are supplied. Such evolutionary fuzzing is
much more effective at exploring new branches.

If AFL generates a test case that covers new branches, that test case becomes
a new seed input. As AFL continues to generate new seeds, more and more states
of the program are exercised. Unfortunately, all branches are considered to be of

2 CONFIG ADDRESS at 0xCF8 and CONFIG DATA at 0xCFC [11].
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 7

equal priority during exploration, so uninteresting states are explored as readily
as interesting states are. This leads to a large number of wasted testing cycles as
uninteresting states are unnecessarily explored. Therefore, VDF modifies AFL
to only instrument the portions of the hypervisor source code that belong to
the virtual device currently being tested. This effectively makes AFL ignore the
remainder of the hypervisor codebase when selectively mutating seed inputs.

AFL maintains a “fuzz bitmap”, with each byte within the bitmap repre-
senting a count of the number of times a particular branch within the fuzzed
program has been taken. AFL does not perform a one-to-one mapping between
a particular branch and a byte within the bitmap. Instead, AFL’s embedded
instrumentation places a random two-byte constant ID into each branch. When-
ever execution reaches an instrumented branch, AFL performs an XOR of the new
branch’s ID and the last branch ID seen prior to arriving at the new branch. This
captures both the current branch and the unique path taken to reach it (such
as when the same function is called from multiple locations in the code). AFL
then applies a hashing function to the XOR’d value to determine which entry in
the bitmap represents that branch combination. Whenever a particular branch
combination is exercised, the appropriate byte is incremented within the bitmap.

VDF modifies AFL to use a much simpler block coverage mechanism that
provides a one-to-one mapping between a particular instrumented branch and
a single entry in the bitmap. Because VDF selectively instruments only the
branches within a virtual device, the bitmap contains more than enough entries
to dedicate an entry to each instrumented branch3. VDF’s modifications do away
with the XORing of IDs and AFL’s hash function. Instead, IDs are assigned lin-
early, simplifiying the ground truth determination of whether a particular branch
has been reached during testing while guaranteeing that no IDs are duplicated.

Thus, AFL takes a general purpose approach towards fuzzing/exploring all
branches within a program. VDF’s modified AFL takes a more focused approach
that constrains fuzzing to only the branches of interest in a program. VDF’s
approach eliminates the possibility of ambiguous branch coverage, which is still
possible to experience with an unmodified AFL.

3.2 VDF Workflow

Figure 3 shows the three-step flow used by VDF when testing a virtual device.
In the first step, virtual device activity is recorded while the device is being
exercised. This log of activity includes any initialization of PCI BARs for the
virtual device via the PCI host controller (if needed), initialization of any internal
device registers, and any MMIO activity that exercises the virtual device. This
log is saved to disk and becomes the seed input for the fuzzer. This collection of
seed input is described further in Sect. 3.3.

In the second step, the collected virtual device read/write activity is then pro-
vided as seed data to AFL. Multiple AFL instances can be launched in parallel,

3 VDF still uses a two-byte branch ID, allowing for 65536 unique branches to be
instrumented. In practice, this is more than adequate for virtual device testing.

A
u

th
o

r 
P

ro
o

f



8 A. Henderson et al.

Fig. 3. VDF’s process for performing fuzz testing of QEMU virtual devices.

with one required master instance and one or more optional slave instances. The
primary difference between master and slave instances is that the master uses a
series of sophisticated mutation strategies (bit/byte swapping, setting bytes to
specific values like 0x00 and 0xFF, etc.) to explore the program under test. Slave
instances only perform random bit flips throughout the seed data.

Once the seed input has been mutated into a new test case, a new QEMU
instance is spawned by AFL. VDF replays the test case in the new QEMU
instance and observes whether the mutated data has caused QEMU to crash or
hang. VDF does not blindly replay events, but rather performs strict filtering
on the mutated seed input during replay. The filter discards malformed events,
events describing a read/write outside the range of the current register bank,
events referencing an invalid register bank, etc. This prevents mutated data
from potentially exercising memory locations unrelated to the virtual device
under test. If a test case causes a crash or hang, the test case is logged to disk.

Finally, in the third step, each of the collected crash and hang test cases is
reduced to a minimal test case capable of reproducing the bug. Both a minimized
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 9

test case and source code to reproduce the bug are generated. The minimization
of test cases is described further in Sect. 3.5.

3.3 Virtual Device Record and Replay

Fuzzing virtual devices is difficult because they are stateful. It is necessary to
traverse an arbitrarily large number of states within both the virtual device
and the remainder of the hypervisor prior to reaching a desired state within the
virtual device. Because each virtual device must be initialized to a known good
start state prior to each test, VDF uses record and replay of previous virtual
device activity to prepare the device for test and then perform the test itself.

First, VDF records any guest reads or writes made to the virtual device’s
control registers when the device is initialized during guest OS boot4. This cap-
tures the setup performed by the BIOS (such as PCI BAR configuration), device
driver initialization in the kernel, and any guest userspace process interaction
with the device’s kernel driver. Table 1 shows the different sources of initializa-
tion activity used by VDF when recording device activity during our testing.

Table 1. QEMU virtual devices seed data sources.

Device class Device Seed data source

Audio AC97 Linux guest boot with ALSA [1] speaker-test

CS4231a

ES1370

Intel-HDA

SoundBlaster 16

Block Floppy qtest test case

Char Parallel Linux guest boot with directed console output

Serial

IDE IDE Core qtest test case

Network EEPro100 (i82550) Linux guest boot with ping of IP address

E1000 (82544GC)

NE2000 (PCI)

PCNET (PCI)

RTL8139 qtest test case

SD Card SD HCI Linux guest boot with mounted SDHCI volume

TPM TPM Linux guest boot with TrouSerS test suite [16]

Watchdog IB700 qtest test case

16300ESB Linux guest boot

4 If only a minimal amount of recorded activity is required, VDF can capture initial-
ization activity via executing a QEMU qtest test case.
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10 A. Henderson et al.

Second, the recorded startup activity is partitioned into two sets: an init set
and a seed set. The init set contains any seed input required to initialize the
device for testing, such as PCI BAR setup, and the activity in this set will never
be mutated by the fuzzer. VDF plays back the init set at the start of each test
to return the device to a known, repeatable state. The seed set contains the seed
input that will be mutated by the fuzzer. It can be any read/write sequence
that exercises the device, and it usually originates from user space activity that
exercises the device (playing an audio file, pinging an IP address, etc.).

Even with no guest OS booted or present, a replay of these two sets returns
the virtual device to the same state that it was in immediately after the reg-
ister activity was originally recorded. While the data in the sets could include
timestamps to ensure that the replay occurs at the correct time intervals, VDF
does not do this. Instead, VDF takes the simpler approach of advancing the vir-
tual clock one microsecond for each read or write performed. The difficulty with
including timestamps within the seed input is that the value of the timestamp is
too easily mutated into very long virtual delays between events. While it is true
that some virtual device branches may only be reachable when a larger virtual
time interval has passed (such as interrupts that are raised when a device has
completed performing some physical event), our observation is that performing
a fixed increment of virtual time on each read or write is a reasonable approach.

Event Record Format. VDF event records contain three fields: a header
field, base offset field, and data written field. This format captures all data
needed to replay an MMIO event and represents this information in a compact
format requiring only 3–8 bytes per event. The compactness of each record is
an important factor because using a smaller record size decreases the number of
bits that can potentially be mutated.

The header is a single byte that captures whether the event is a read or write
event, the size of the event (1, 2, or 4 bytes), and which virtual device register
bank the event takes place in. The base offset field is one to three bytes in size
and holds the offset from the base address. The size of this field will vary from
device to device, as some devices have small register bank ranges (requiring only
one byte to represent an offset into the register bank) and other devices map
much larger register banks and device RAM address ranges (requiring two or
three bytes to specify an offset). The data field is one or four bytes in size and
holds the data written to a memory location when the header field specifies a
write operation. Some devices, such as the floppy disk controller and the serial
port, only accept single byte writes. Most devices accept writes of 1, 2, or 4
bytes, requiring a 4 byte field for those devices to represent the data. For read
operations, the data field is ignored.

While VDF’s record and replay of MMIO activity captures the interaction
of the guest environment with virtual devices, some devices may make use of
interrupts and DMA. However, we argue that such hardware events are not
necessary to recreate the behavior of most devices for fuzz testing. Interrupts
are typically produced by a virtual device, rather than consumed, to alert the
guest environment that some hardware event has completed. Typically, another
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 11

read or write event would be initiated by the guest in reaction to an interrupt, but
since we record all this read/write activity, the guest’s response to the interrupt
is captured without explicitly capturing the interrupt.

DMA events copy data between guest and device RAM. DMA copies typically
occur when buffers of data must be copied and the CPU isn’t needed to copy
this data byte-by-byte. Our observation is that if we are only copying data to
be processed, it is not actually necessary to place legitimate data at the correct
location within guest RAM and then copy it into the virtual device. It is enough
to say that the data has been copied and then move onto the next event. While
the size of data and alignment of the data may have some impact on the behavior
of the virtual device, such details are outside the scope of this paper.

Recording Virtual Device Activity. Almost every interaction between the
guest environment and virtual devices occurs via virtual device callback func-
tions. These functions are registered with QEMU’s MMU and are triggered by
MMIO activity from the guest. Such callback functions are an ideal location to
record the virtual device’s activity. Rather than attempt to capture the usage of
each device by reconstructing the semantics of the guest’s kernel and memory
space, we capture device activity at the point of the hardware interface that
is provided to software. In fact, we have no immediate need to understand the
details of the guest environment as the virtual devices execute at a level above
that of even the guest’s BIOS or kernel. By placing recording logic in these
callback functions, VDF is able to instrument each virtual device by manually
adding only 3–5 LOC of recording logic to each MMIO callback function.

Playback of Virtual Device Activity. Once VDF has recorded a stream of
read/write events for a virtual device, it must replay these events within the con-
text of a running QEMU. Because QEMU traverses a large number of branches
before all virtual devices are instantiated and testing can proceed, it isn’t possi-
ble to provide the event data to QEMU via the command line. The events must
originate from within the guest environment in the form of memory read/write
activity. Therefore, QEMU must be initialized before performing event replay.

QEMU provides qtest, which is a lightweight framework for testing virtual
devices. qtest is a QEMU accelerator, or type of execution engine. Common
accelerators for QEMU are TCG (for the usage of QEMU TCG IR) and KVM
(for using the host kernel’s KVM for hardware accelerated execution of guest
CPU instructions). The qtest framework works by using a test driver process
to spawn a separate QEMU process which uses the qtest accelerator. The qtest
accelerator within QEMU communicates with the test driver process via IPC.
The test driver remotely controls QEMU’s qtest accelerator to perform guest
memory read/write instructions to virtual devices exposed via MMIO. Once the
test is complete, the test driver terminates the QEMU process.

While the qtest accelerator is convenient, it is inadequate for fuzz testing for
two reasons. First, the throughput and timing of the test is slowed because of
QEMU start-up and the serialization, deserialization, and transfer time of the
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12 A. Henderson et al.

IPC protocol. Commands are sent between the test driver and QEMU as plain-
text messages, requiring time to parse each string. While this is not a concern
for the virtual clock of QEMU, wall clock-related issues (such as thread race
conditions) are less likely to be exposed.

Second, qtest does not provide control over QEMU beyond spawning the new
QEMU instance and sending control messages. It is unable to determine exactly
where a hung QEMU process has become stuck. A hung QEMU also hangs the
qtest test driver process, as the test driver will continue to wait for input from the
non-responsive QEMU. If QEMU crashes, qtest will respond with the feedback
that the test failed. Reproducing the test which triggers the crash may repeat
the crash, but the analyst still has to attach a debugger to the spawned QEMU
instance prior to the crash to understand the crash.

VDF seeks to automate the discovery of any combination of virtual device
MMIO activity that triggers a hang or crash in either the virtual device or some
portion of the hypervisor. qtest excels at running known-good, hard-coded tests
on QEMU virtual devices for repeatable regression testing. But, it becomes less
useful when searching for unknown vulnerabilities, which requires automatically
generating new test cases that cover as many execution paths as possible.

To address these shortcomings, we have developed a new fuzzer QEMU accel-
erator, based upon qtest, for VDF’s event playback. This new accelerator adds
approximately 850 LOC to the QEMU codebase. It combines the functionality of
the qtest test driver process and the qtest accelerator within QEMU, eliminating
the need for a separate test driver process and the IPC between QEMU and the
test driver. More importantly, it allows VDF to directly replay read/write events
as if the event came directly from within a complete guest environment.

3.4 Selective Branch Instrumentation

Fuzz testing must explore as many branches of interest as possible, so determin-
ing the coverage of those branches during testing is a metric for measuring the
thoroughness of each testing session. While the code within any branch may host
a particular bug, execution of the branch must be performed to trigger the bug.
Thus, reaching more branches of interest increases the chances that a bug will be
discovered. However, if the fuzzer attempts to explore every branch it discovers,
it can potentially waste millions of tests exploring uninteresting branches.

To address this issue, VDF leverages the instrumentation capabilities of
AFL to selectively place instrumentation in only the branches of interest (those
belonging to a virtual device). By default, the compiler toolchain supplied with
AFL instruments programs built using it. VDF modifies AFL to selectively
instrument only code of interest within the target program. A special compile-
time option has been added to AFL’s toolchain, and only branches in source files
compiled with this flag are instrumented. Other files will have uninstrumented
branches that are ignored by the fuzzer as they are seen as (very long) basic
blocks of instructions that occur between instrumented branches.

Prior to the start of each testing session, VDF dumps and examines all func-
tion and label symbols found in the instrumented hypervisor. If a symbol is
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 13

found that maps to an instrumented branch belonging to the current virtual
device under test, the name, address, and AFL branch ID (embedded in the
symbol name) of the symbol are stored and mapped to the symbol’s location
in the fuzz bitmap. At any point during testing, the AFL fuzz bitmap can be
dumped using VDF to provide ground truth of exactly which branches have been
covered.

static void voice_set_active (AC97LinkState *s, int bm_index, int on) {
switch (bm_index) {
case PI_INDEX:

AUD_set_active_in (s->voice_pi, on);
break;

case PO_INDEX:
AUD_set_active_out (s->voice_po, on);
break;

case MC_INDEX:
AUD_set_active_in (s->voice_mc, on);
break;

default:
AUD_log ("ac97",

"invalid bm_index(%d) in voice_set_active",
bm_index);

break;
}

}
ID: COVERED: ADDRESS: SYMBOL: LINE:
--- -------- -------- ------- -----
00c COVER 002e92e0 voice_set_active 296
00d COVER 002e9324 REF_LABEL__tmp_ccBGk9PX_s__27_39 296
00e COVER 002e9368 REF_LABEL__tmp_ccBGk9PX_s__28_40 296
00f UNCOVER 002e93a4 REF_LABEL__tmp_ccBGk9PX_s__29_41 296

Fig. 4. A sample of the branch coverage data for the AC97 virtual device.

Figure 4 shows an example of the coverage information report that VDF
provides. This example shows both the original source code for a function in the
AC97 audio virtual device (top) and the generated branch coverage report for
that function (bottom). The report provides two pieces of important information.
The first is the ground truth of which branches are instrumented, including their
address within the binary, the symbol associated with the branch (inserted by
the modified AFL), and the original source file line number where the branch’s
code is located. The second is whether a particular branch has been visited yet.

The four branches listed in the report are associated with the four cases in the
switch statement of the voice set active() function, which is located on line
296 in the source file. An analyst familiar with the internals of the AC97 virtual
device could review this report and then devise new seed inputs to trigger any
unexplored branches. Thus, such reports are useful for not only an understanding
of which branches have been reached, but they also providing insight into how
unexplored virtual device branches might be reached.

3.5 Creation of Minimal Test Cases

Once VDF detects either a crash or a hang in a virtual device, the test case that
produced the issue is saved for later examination. This test case may contain a
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14 A. Henderson et al.

large amount of test data that is not needed to reproduce the discovered issue,
so it is desirable to reduce this test case to the absolute minimum number of
records needed to still trigger the bug. Such a minimal test case simplifies the
job of the analyst when using the test case to debug the underlying cause.

AFL provides a test case minimization utility called afl-tmin. afl-tmin
seeks to make the test case input smaller while still following the same path of
execution through the binary. Unfortunately, this will not be useful for reducing
the test cases recorded by VDF, which is only interested in reaching the state
in which a crash/hang occurs. It has no interest in reaching every state in the
test case, but only the states necessary to reach the crash/hang state. Therefore,
VDF performs a three-step test case post-processing, seen in Fig. 5, to produce
a minimal test case which passes through a minimimal number of states from
any test case shown to reproduce an issue.

Fig. 5. The test case minimization process.

First, the test case file is read into memory and any valid test records in the
test case are placed into an ordered dataset in the order in which they appear
within the test case. Because the fuzzer lacks semantic understanding of the
fields within these records, it produces many records via mutation that contain
invalid garbage data. Such invalid records may contain an invalid header field,
describe a base offset to a register outside of the register bank for the device,
or simply be a truncated record at the end of the test case. After this filtering
step, only valid test records remain.
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 15

Second, VDF eliminates all records in the dataset that are located after the
point in the test case where the issue is triggered. To do this, it generates a
new test case using all but the last record of the dataset and then attempts to
trigger the issue using this truncated test case. If the issue is still triggered, the
last record is then removed from the dataset and another new truncated test
case is generated in the same fashion. This process is repeated until a truncated
test case is created that no longer triggers the issue, indicating that all dataset
records located after the issue being triggered are now removed.

Third, VDF eliminates any remaining records in the dataset that are not
necessary to trigger the issue. Beginning with the first record in the dataset,
VDF iterates through each dataset record, generating a new test case using all
but the current record. It then attempts to trigger the issue using this generated
test case. If the issue is still triggered, the current record is not needed to trigger
the issue and is removed from the dataset. Once each dataset record has been
visited and the unnecessary records removed, the dataset is written out to disk
as the final, minimized test case. In addition, source code is generated that is
suitable for reproducing the minimized dataset as a qtest testcase.

While simple, VDF’s test case minimization is very effective. The 1014 crash
and hang test cases produced by the fuzzer during our testing have an average
size of 2563.5 bytes each. After reducing these test cases to a minimal state,
the average test case size becomes only 476 bytes, a mere 18.57% of the original
test case size. On average, each minimal test case is able to trigger an issue by
performing approximately 13 read/write operations. This average is misleadingly
high due to some outliers, however, as over 92.3% of the minimized test cases
perform fewer than six MMIO read/write operations.

4 Evaluation

The configuration used for all evaluations is a cloud-based 8-core 2.0 GHz Intel
Xeon E5-2650 CPU instance with 8 GB of RAM. Each instance uses a minimal
server installation of Ubuntu 14.04 Linux as its OS. Eight cloud instances were
utilized in parallel. Each device was fuzzed within a single cloud instance, with
one master fuzzer process and five slave fuzzer processes performing the testing.
A similar configuration was used for test case minimization: each cloud instance
ran six minimizer processes in parallel to reduce each crash/hang test case.

We selected a set of eighteen virtual devices, shown in Table 2, for our evalu-
ation of VDF. These virtual devices utilize a wide variety of hardware features,
such as timers, interrupts, and DMA. Each of these devices provides one or
more MMIO interfaces to their control registers, which VDF’s fuzzing acceler-
ator interacts with. All devices were evaluated using QEMU v2.5.05, with the
exception of the TPM device. The TPM was evaluated using QEMU v2.2.50
with an applied patchset that provides a libtpms emulation [20] of the TPM

5 US government approval for the engineering and public release of the research shown
in this paper required a time frame of approximately one year. The versions of QEMU
identified for this study were originally selected at the start of that process.
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16 A. Henderson et al.

Table 2. QEMU virtual devices tested with VDF.

Device class Device Branches

of interest

Initial

coverage

Final

coverage

Crashes

found

Hangs

found

Tests per

instance

Test

duration

Audio AC97 164 43.9% 53.0% 87 0 24.0M 59d 18 h

CS4231a 109 5.5% 56.0% 0 0 29.3M 65d 12 h

ES1370 165 50.9% 72.7% 0 0 30.8M 69d 18 h

Intel-HDA 273 43.6% 58.6% 238 0 23.1M 59d 12 h

SoundBlaster

16

311 26.7% 81.0% 0 0 26.7M 58d 13 h

Block Floppy 370 44.9% 70.5% 0 0 21.0M 57d 15 h

Char Parallel 91 30.8% 42.9% 0 0 14.6M 25d 12 h

Serial 213 2.3% 44.6% 0 0 33.0M 62d 12 h

IDE IDE Core 524 13.9% 27.5% 0 0 24.9M 65d 6 h

Network EEPro100

(i82550)

240 15.8% 75.4% 0 0 25.7M 62d 12 h

E1000

(82544GC)

332 13.9% 81.6% 0 384 23.9M 61d

NE2000 (PCI) 145 39.3% 71.7% 0 0 25.2M 58d 13 h

PCNET (PCI) 487 11.5% 36.1% 0 0 25.0M 58d 13h

RTL8139 349 12.9% 63.0% 0 6 24.2M 58d 12 h

SD Card SD HCI 486 18.3% 90.5% 14 265 24.0M 62d

TPM TPM 238 26.1% 67.3% 9 11 2.1M 36d 12 h

Watchdog IB700 16 87.5% 100.0% 0 0 0.3M 8h

I6300ESB 76 43.4% 68.4% 0 0 2.1M 26 h

hardware device [23]. Fewer than 1000 LOC were added to each of these two
QEMU codebases to implement both the fuzzer accelerator and any recording
instrumentation necessary within each tested virtual device.

VDF discovered noteworthy bugs in six virtual devices within the evaluation
set, including a known denial-of-service CVE [7] and a new, previously undis-
covered denial-of-service CVE [8]. Additional bugs were discovered relating to
memory management and thread-race conditions, underscoring VDF’s ability to
discover bugs of a variety of natures utilizing the same techniques and principles.

4.1 Virtual Device Coverage and Bug Discovery

During our testing with VDF, we collected four metrics to aid in our under-
standing of both the speed and magnitude of VDF’s coverage. These metrics
are (1) the number of branches covered by the initial seed test case; (2) the
total number of branches in the virtual device; (3) the current total number
of branches covered (updated at one minute intervals); and (4) the percentage
of total bugs discovered during each cumulative day of testing. Taken together,
these metrics describe not only the total amount of coverage provided by VDF,
but also the speed at which coverage improves via fuzzing and how quickly it
discovers crash/hangs.

Figure 6 shows the average percentage of covered branches over cumulative
testing time. Of the eighteen tested virtual devices, 30.15% of the total branches
were covered by the initial seed test cases. After nine cumulative days of test-
ing (36 h of parallel testing with one master and five slave fuzzing instances),

A
u

th
o

r 
P

ro
o

f



VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 17

62.32% of the total branches were covered. The largest increase in average cov-
erage was seen during the first six cumulative hours of testing, where cover-
age increased from the initial 30.15% to 52.84%. After 2.25 days of cumulative
testing, average coverage slows considerably and only 0.43% more of the total
branches are discovered during the next 6.75 cumulative days of testing. While
eleven of the eighteen tested devices stopped discovering new branches after only
one day of cumulative testing, six of the seven remaining devices continued to
discover additional branches until 6.5 cumulative days had elapsed. Only in the
serial device were additional branches discovered after nine cumulative days.
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Fig. 6. Average percentage of branches covered (left) and average percentage of total
bugs discovered (right) over time during fuzz testing.

Table 2 presents some insightful statistics about coverage. The smallest
improvement in the percentage of coverage was seen in the AC97 virtual device
(9.1% increase), and the largest improvement in coverage was seen in the SDHCI
virtual device (72.2% increase). The smallest percentage of coverage for any vir-
tual device with discovered crashes/hangs was 53.0% (AC97), but eight others
had a greater level of coverage than 53.0% with no discovered crashes/hangs.

Figure 6 also shows the average percentage of discovered hangs/crashes over
cumulative testing time. As shown in Table 2, a total of 1014 crashes and hangs
were discovered in six virtual devices. These 1014 test cases were all discovered
within 27 days of cumulative testing for each device, with no additional test
cases being discovered after that point. Approximately 50% of all test cases
were discovered after four days of cumulative testing, with approximately 80%
of all test cases discovered after five days of cumulative testing.

One interesting insight is that even though the number of branches covered
is very close to its maximum after approximately 2.5 cumulative days of testing,
only approximately 25% of all crash/hang test cases were discovered at that
point in time. This shows that it is not necessarily an increase in branch coverage
that leads to the discovery of bugs, but rather the repeated fuzz testing of those
discovered branches.

4.2 Classification of All Discovered Virtual Device Bugs

While it is straightforward to count the number of discovered crash/hang test
cases generated by VDF, it is non-trivial to map these test cases to their
underlying cause without a full understanding of the virtual device under test.
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Our proposed test case minimization greatly simplifies this process, as many
unique bugs identified by VDF minimize to the same set of read/write oper-
ations. The ordering of these operations may differ, but the final read/write
that triggers the bug remains the same. Each discovered virtual device bug falls
into one of four categories: Excess resource usage (AC97), invalid data trans-
fers (E1000, RTL8139, SDHCI), debugging asserts (Intel-HDA), and thread race
conditions (TPM).

Excess Host Resource Usage. Host system resources must be allocated to
QEMU to represent the resources belonging to the guest environment. Such
resources include RAM to represent the physical RAM present on the guest, CPU
cores and cycles to perform CPU and virtual device emulation, and disk space
to hold the guest’s secondary storage. Additional resources may be allocated by
QEMU at runtime to meet the data needs of virtual devices, which presents a
potential opportunity for a malicious guest to trick QEMU into allocating large
amounts of unnecessary resources.

VDF discovered a crash while testing the AC97 audio virtual device, caused
by QEMU allocating approximately 500 MB of additional host memory when the
control register for AC97 MIC ADC Rate is set to an invalid, non-zero value. An
important observation on this type of resource bug is that it will easily remain
hidden unless the resource usage of the QEMU process is strictly monitored and
enforced. For example, using the Linux ulimit command to place a limit on the
virtual memory allocated to QEMU will discover this bug when the specified
memory limit is exceeded. VDF enforces such a limitation during its testing,
restricting the amount of virtual memory allocated to each QEMU instance.
Once this limit is exceeded, a SIGTRAP signal is raised and a crash occurs.

Allocating excessive resources for a single guest instance is typically not a
concern, but the potential impact increases greatly when considering a scenario
with large numbers of instances deployed within a cloud environment. Discov-
ering and correcting such bugs can have a measurable impact on the resource
usage of hosts implementing cloud environments. Cloud service providers must
allocate some amount of host hardware RAM and secondary storage to each
VM hosted on that hardware. Thus, each VM must have a resource quota that
is determined by the service provider and enforced by the host and hypervi-
sor. However, if this quota does not take into account the resources used by
the hypervisor itself, an excess host resource usage bug can potentially consume
considerable host resources. Therefore, we reported this as a bug to the QEMU
maintainers.

Invalid Data Transfers. Many virtual devices transfer blocks of data. Such
transfers are used to move data to and from secondary storage and guest physical
memory via DMA. However, invalid data transfers can cause virtual devices
to hang in an infinite loop. This type of bug can be difficult to deal with in
production systems as the QEMU process is still running while the guest’s virtual
clock is in a “paused” state. If queried, the QEMU process appears to be running
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VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices 19

and responsive. The guest remains frozen, causing a denial of service of any
processes running inside of the guest.

VDF discovered test cases that trigger invalid data transfer bugs in the E1000
and RTL8139 virtual network devices and the SDHCI virtual block device. In
each case, a transfer was initiated with either a block size of zero or an invalid
transfer size, leaving each device in a loop that either never terminates or exe-
cutes for an arbitrarily long period of time.

For the E1000 virtual device, the guest sets the device’s E1000 TDH and
E1000 TDT registers (TX descriptor head and tail, respectively) with offsets
into guest memory that designate the current position into a buffer contain-
ing transfer operation descriptors. The guest then initiates a transfer using
the E1000 TCTL register (TX control). However, if the values placed into the
E1000 TDH/TDL registers are too large, then the transfer logic enters an infinite
loop. A review of reported CVEs has shown that this issue was already discovered
in January 2016 [7] and patched [14].

For the RTL8139 virtual device, the guest resets the device via the ChipCmd
(chip control) register. Then, the TxAddr0 (transfer address), CpCmd (“C+” mode
command), and TxPoll (check transfer descriptors) registers are set to initiate
a DMA transfer in the RTL8139’s “C+” mode. However, if an invalid address
is supplied to the TxAddr0 register, QEMU becomes trapped in an endless loop
of DMA lookups. This was an undiscovered bug, which has been patched and
assigned CVE-2016-8910 [8] as a denial of service exploit.

For the SDHCI virtual device, the guest sets the device’s SDHC CMDREG reg-
ister bit for “data is present” and sets the block size to transfer to zero in the
SDHC BLKSIZE register. The switch case for SDHC BLKSIZE in the sdhci write()
MMIO callback function in hw/sd/sdhci.c performs a check to determine
whether the block size exceeds the maximum allowable block size, but it does
not perform a check for a block size of zero. Once the transfer begins, the device
becomes stuck in a loop, and the guest environment becomes unresponsive. Luck-
ily, fixes for this issue were integrated into mainline QEMU [12] in December 2015.

Debugging Asserts. While using an assert is a commonly-used debugging
technique in mature software codebases, asserts are used to catch a particular
case that should “never happen”. If that impossible case actually can happen as a
result of untrusted input, proper error-handling logic should be added to the code
to address it. Within the Intel-HDA audio device, the intel hda reg write()
function in hw/audio/intel-hda.c uses an assert call to trigger a SIGABRT
when a write is made to an address offset of 0 from the MMIO register base
address. VDF was able to trigger this assert, which we have reported as a bug
to the QEMU maintainers.

Thread Race Conditions. The virtual TPM in mainline QEMU is a pass-
through device to the host’s hardware TPM device. It is possible to implement a
TPM emulated in software using libtpms [20] and then have QEMU pass TPM
activity through to the emulated hardware. QEMU interacts with the separate
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process implementing the TPM via RPC. However, it is also possible to integrate
libtpms directly into QEMU by applying a patchset provided by IBM [23]. This
allows each QEMU instance to “own” its own TPM instance and directly control
the start-up and shutdown of the TPM via a TPM backend in QEMU.

VDF discovered a hang that is the result of the TPM backend thread pool
shutdown occurring before the tasks allocated to the thread pool have all been
completed. Without an adequately long call to sleep() or usleep() prior to the
thread pool shutdown to force a context switch and allow the thread pool worker
threads to complete, the thread pool will hang on shutdown. Because the shut-
down of the TPM backend is registered to be called at exit() via an atexit()
call, any premature exit() prior to the necessary sleep() or usleep() call will
trigger this issue. QEMU’s signal handlers are never unregistered, so using a
SIGTERM signal to kill QEMU is unsuccessful.

Note that this thread pool is part of the TPM backend design in QEMU,
and is not part of the libtpms library that implements the actual TPM emula-
tor. Most likely this design decision was made to avoid any noticeable slowdown
in QEMU’s execution by making the TPM virtual device run in an asynchro-
nous manner to avoid any performance impact caused by performing expensive
operations in the software TPM. Other newer TPM pass-through options, such
as the Character in User Space (CUSE) device interface to a stand-alone TPM
emulator using libtpms [13], should not experience this particular issue.

5 Related Work

Fuzzing has been a well-explored research topic for a number of years. The
original fuzzing paper [32] used random program inputs as seed data for testing
Unix utilities. Later studies on the selection of proper fuzzing seeds [25,34] and
the use of concolic fuzzing to discover software vulnerabilities [17] have both been
used to improve the coverage and discovery of bugs in programs undergoing fuzz
testing. By relying on the record and replay of virtual device activity, VDF
provides proper seed input that is known to execute branches of interest.

Frameworks for testing virtual devices are a fairly recent development.
qtest [9] was the first framework to approach the idea of flexible low-level test-
ing of virtual devices. VDF leverages qtest, but has improved on the approach
to better improve test case throughput and test automation. Tang and Li pro-
posed an approach [36] using a custom BIOS within the guest environment that
listened on a virtual serial port to drive testing. VDF’s approach relies upon
no software executing within the guest environment (BIOS, kernel, etc.), and
performs device-specific BIOS-level initialization as part of its init set.

A number of tools utilize record and replay. ReVirt [31] records system events
to replay the activity of compromised guest systems to better analyze the nature
of the attack. Aftersight [27] records selected system events and then offloads
those events to another system for replay and analysis. Its primary contribution
of decoupled analysis demonstrates that record and replay facilitates repeated
heavyweight analysis after the moment that the event of interest originally
occurred. PANDA [30], a much more recent work in this area, uses a modified
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QEMU to record non-deterministic guest events that occur system-wide. These
events are then replayed through increasingly heavier-weight analysis plugins to
reverse engineer the purpose and behavior of arbitrary portions of the guest.

Symbolic execution of complex programs is also a common technique to calcu-
late the path predicates and conditionals needed to exercise branches of interest.
KLEE [24] performs symbolic execution at the process level. Selective Symbolic
Execution (S2E) [26] executes a complete guest environment under QEMU and
performs symbolic execution at the whole-system level. The approach proposed
by Cong et al. [28] attempts to extract the code for five network virtual devices
from QEMU, stub out key QEMU datatypes, and then perform symbolic execu-
tion on the resulting code. VDF is capable of performing its testing and analysis
of a much larger set of virtual devices within the context of QEMU. However,
the techniques laid out in [28] can complement VDF by generating new seed test
cases designed to augment VDF’s ability to reach new branches of interest.

Driller [35] uses both white box fuzzing and symbolic execution to discover
vulnerabilities within programs. Unlike VDF, which is interested in exploring
only branches of interest, Driller seeks to explore all branches within a program.
It switches between symbolic execution and fuzzing when fuzzing gets “stuck”
and can no longer discover data values that explore new branches. VDF focuses
on executing large numbers of fuzzing test cases without using expensive sym-
bolic execution to create new seeds.

The discovery of vulnerable code is a difficult and ongoing process, and there
is interest in research work orthogonal to our effort that seeks to protect the
host system and harden hypervisors. DeHype [37] reduces the privileged attack
surface of KVM by deprivileging 93.2% of the KVM hypervisor code from kernel
space to user space on the host. The Qubes OS project [15] compartmentalizes
software into a variety of VMs, allowing the isolation of trusted activities from
trusted ones within the OS. Qubes relies upon the bare-metal Xen hypervisor,
which is much harder to exploit than a hypervisor executing under the host OS.

6 Conclusion

In this paper, we presented VDF, a system for performing fuzz testing on vir-
tual devices, within the context of a running hypervisor, using record/replay of
memory-mapped I/O events. We used VDF to fuzz test eighteen virtual devices,
generating 1014 crash or hang test cases that reveal bugs in six of the tested
devices. Over 80% of the crashes and hangs were discovered within the first day
of testing. VDF covered an average of 62.32% of virtual device branches during
testing, and the average test case was minimized to 18.57% of its original size.
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