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Abstract—With the rise of privacy concerns in traditional
centralized machine learning services, the federated learning,
which incorporates multiple participants to train a global model
across their localized training data, has lately received signifi-
cant attention in both industry and academia. However, recent
researches reveal the inherent vulnerabilities of the federated
learning for the membership inference attacks that the adver-
sary could infer whether a given data record belongs to the
model’s training set. Although the state-of-the-art techniques
could successfully deduce the membership information from
the centralized machine learning models, it is still challenging
to infer the membership to a more confined level, user-level.
In this paper, We propose a novel user-level inference attack
mechanism in federated learning. Specifically, we first give
a comprehensive analysis of active and targeted membership
inference attacks in the context of the federated learning. Then,
by considering a more complicated scenario that the adversary
can only passively observe the updating models from different
iterations, we incorporate the generative adversarial networks
into our method, which can enrich the training set for the final
membership inference model. The extensive experimental results
demonstrate the effectiveness of our proposed attacking approach
in the case of single-label and multi-label.

Index Terms—Federated learning; Membership inference;
Generative adversarial networks; User-level

I. INTRODUCTION

With the revolution of the decentralized machine learning,
researches on collaborative learning technologies such as the
federated learning for resource-constrained devices on mobile
edge networks [1] have been increasing and expanding the
landscape of use cases. The federated learning [2] enables
mobile devices to collaboratively learn a shared prediction
model while keeping all the training data locally instead of
in the cloud, which may be at risk of privacy leakage. Unlike
other collaborative learning frameworks, the federated learning
updates a global model by aggregating all local parameters
from participants, so that the federated model can benefit from
a wide range of non-IID [3] and unbalanced data distribution
among diverse participants.

Although the federated learning can provide a basic privacy
guarantee with localized training, the privacy issues still exist
during the aggregation and communication process. Emerg-
ing attacking methods, including the membership inference,
have been undermining the security of the federated learning.
Basically, the membership inference problem is a classifi-
cation problem that the adversary needs to tell whether the
data with unknown ownership is part of a certain collection
or not. Although this is an indirect privacy stealing, when
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Fig. 1. Membership inference in federated learning.

membership inference attacks are used as pre-attacks for other
attack scenarios, such as the reconstruction attack [4], the
membership information makes these attacks more targeted
and disruptive. Shokri et al. [5] first proposed the membership
inference against a black-box machine learning API. In this
case, the adversary can simulate the behavior of the target
model to compromise the privacy of the training set through
many shadow models without knowing the internal structure
and parameters of the target model. However, this attack
has many assumptions that the adversary has knowledge of
the target model structure, and has a dataset from the same
distribution as the target models training data.

For the recent researches on the security issues of the artifi-
cial intelligence, Salem et al. [6] improved Shokri’s method by
containing multiple neural network models in a stack, which
is sensitive to the membership information. In this way, the
attack model can only focus on the relationship between the
membership information and the classification results, even if
the data is from different distributions. Nasr et al. [7] proposed
a membership inference attack launched from the participant
side. The core technology of the scheme was the stochastic
gradient ascent (SGA). The adversary extracted the parameters
of the target model during the training process, including
gradients, loss rates, etc. into fully connected layers to train
the neural network. When the gradients of data are forced to
increase by SGA every time, the gradients of member data
will be forcibly decreased by the stochastic gradient descent
(SGD) [8], while the gradients of non-member data still rise.
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By detecting this distinction, the membership information is
transformed into a score, which is used as a new feature to
construct an unsupervised learning to distinguish member data
from non-member data.

Although the above-mentioned inference attacks can reveal
the privacy of training data in varying degrees, they presented
several limitations. Firstly, in the previous centralized learning,
the dataset used to train the attack model had the same
distribution as the dataset belonging to the target model, and
even these datasets have a certain proportion of intersection.
Secondly, there is no research about the possible existence of
a malicious participant launching the membership inference,
which is close to the real situation. Motivated by those short-
comings in existing inference attacking techniques, we give
a deep analysis of active and targeted membership inference
attacks in the federated learning with a white-box access
model from the perspective of a malicious participant. We
name our scheme as the user-level membership inference.
The reason why we call ‘user-level’ is that we have refined
the target of inference from the previous global model to a
certain participant (victim), caring more about his membership
privacy, and the adversary also plays the role of a certain
participant in federated learning, see Figure 1. Based on the
traditional membership inference in centralized and distributed
learning, we take a more practical threat assumption that the
adversary does not need to know any prior knowledge about
the training datasets. Stuck by the inherent defense mechanism
in federated learning, the model averaging algorithm, and the
lack of training data for the membership inference, we further
propose a local-deployed data augment method relying on
the generative adversarial networks (GANs) to generate high-
quality fake samples.

Our contributions in this paper can be summarized as
follows.

o User-level membership inference: We further disclose
the security hole of the current federated learning by nov-
elly launching fine-grained membership inference attacks
and encourage more researches on preventing participants
from leaking privacy.

o Data augment using GANs: To obtain the data distri-
bution of other participants to perform the membership
inference, we innovatively use local-deployed generative
adversarial networks to generate samples with all labels.

o Excellent performances in experiment: In experiments,
we set two major indexes, the accuracy of the mem-
bership inference and the learning task, to measure the
effectiveness of our scheme. We also performed multiple
sets of comparative experiments to prove the impact of
the number of labels on the membership inference attack.

The rest of this paper is organized as follows. Sec. II
reviews the related work. Sec. III briefs some background
knowledge and introduces the threat model. Sec. IV describes
the proposed method framework along with an analysis of the
membership inference. The performance evaluation results are
presented in Sec. V. Sec. VI discusses the limitations of our

method and gives some ideas. Finally, Sec. VII concludes the
paper.

II. RELATED WORK

In this section, we will introduce the privacy protection
methods for the distributed deep learning and the federated
learning. After that, we will refine the issue of privacy leakage
to the membership inference attack. Finally, we present the
various attacks against a specific victim in the federated
learning scenario.

A. Privacy-preserving Distributed Learning <& Federated
Learning

The traditional centralized machine learning, where the data
holder trains the model locally, is limited by the computing
resources and data volume. It is difficult to meet the current
needs for massive data calculations, data diversity, and storage
performance. As a result, the distributed learning framework
emerges, providing a collaborative training scenario. But once
the third party involves, there will be a problem of privacy
leakage. To protect the distributed learning, an algorithm
named as distributed selective stochastic gradient descent
(DSSGD) was proposed by R. Shokri et al. [9]. The results
showed that even if only 1% of the parameters are shared,
the collaborative learning will bring a higher accuracy than
the centralized learning. Moreover, R. Shokri et al. [9] utilized
differential privacy [10] to effectively prevent data privacy that
may be indirectly leaked. Based on the previous article, Phong
et al. [11] proposed four cases of indirect privacy leakage and
pointed out that even if some gradients are uploaded randomly,
there are still significant hidden privacy risks. The author
introduced homomorphic encryption technology [12] in the
large-scale distributed neural network to ensure that the cloud
server cannot steal the privacy of data during the entire process
of model training. The only drawback was computationally
expensive and time-consuming.

The difference between the collaborative learning and the
federated learning is that the central server of the federated
learning will average the updates (ie, the weight matrix) after
each communication round. Even so, the privacy violation
remains a challenge. In the user-level differential privacy
algorithm proposed by [13], this average is changed and
approximated using a random mechanism. This is done to
hide the contributions of individual participants in the collec-
tion, thereby protecting the entire distributed learning process.
Stacey Truex et al. [14], in order to compensate for the impact
of differential privacy on model accuracy, combining differ-
ential privacy with secure multiparty calculations, reduced
the noise injection caused by the increase in the number of
participants and maintained the accuracy and privacy of the
model. Inspired by these efforts, we began to focus on the
privacy preserving in federated learning.

B. Membership Inference Attack

The membership inference attack means that when a record
is given to the inference model, the model can tell whether
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the record belongs to a targets training set. As the central-
ized learning evolves to the distributed learning, there are
many variants of the membership inference, which can be
divided into active attacks and passive attacks, including those
launched by a malicious server and by malicious participants
[7]. Not surprisingly, the more participants are involved,
the less information that adversary can learn from another
participant. In other words, the accuracy of the membership
inference attack will decrease as the number of participants
increases. Taking into the situation of numerous participants,
the active local adversaries are facing challenges of lacking
training data. Besides, the research found that even a model
with the differential privacy protection still has the risk of
leaking membership privacy [15]. Our work focuses on the
membership inference in federated learning, but more detailed,
we are specific to the privacy of a certain participant, not the
privacy of the entire global model. The main reason for the
leakage of membership information is the model overfitting
[16-18]. This takes the membership inference a step further
in the field of study.

C. Attacks Against a Specific Victim in the Collaborative &
Federated Learning

In addition to stealing membership information, there are
many attacks against participants’ privacy in federated learn-
ing. These attacks, for example, the poisoning attack [19],
the model inversion attack [20], the representative inference
[21], the model stealing attack [22], the capturing of extra
properties [23], mainly assume that the adversary, whether a
malicious server or a malicious participant, actively launches
attacks and tries to induce the victim to output more private
information to achieve the purpose. However, attacks from
client-side in federated learning are limited to recovering class-
wised representatives rather than mining user-level privacy
because the malicious participant can only access updates
aggregated by the server (contributed by all the participants).
Therefore, to launch these attacks, more auxiliary information
is often required, e.g., class labels or other participant-wise
properties. Our method alleviates this limitation with the
generative adversarial networks (GANs) and does not require
a lot of auxiliary information.

III. PRELIMINARIES

In this section, we introduce the background knowledge and
the other preliminaries, including assumptions and the threat
model of our method.

A. Federated Learning

The federated learning [24] is a distributed deep learning
solution first proposed by Google in 2016. In the selection
phase of the federated learning, the server will randomly and
partly select participants to participate in this round of training.
In the reporting phase, the server will wait for each participant
to return the trained gradient parameters. After the server
receiving parameters, it will use an algorithm to aggregate
them and notify participants of the next request time. If there

are enough participants returning gradients before the timeout,
this round of training is successful, otherwise, it fails. In the
entire system, there is a pace control module (Pace Steering),
which can manage the connection of all the participants. For
the small-scale federated learning training, Pace Steering guar-
antees that sufficient participants are involved in each round of
training. For the large-scale federated learning training, Pace
Steering will randomize the request time of the participants to
avoid a large number of simultaneous requests, which may
cause problems. By the way, the models trained by each
participant do not interfere with each other during the training
process.

In 2017, Google’s Mcmahan et al. proposed the FedAvg
algorithm, which is a synchronous protocol [25]. The updates
are averaged and accumulated to the current shared model.
Eq. 1 demonstrates the process. M; denotes the shared model
at the tth iteration, M;,; means the newest model and uf
indicates the update from the kth client at iteration .

N
1
_ k
Migy = My + Nkz_lut (1)

All participants execute Eq. 2 in each epoch, where 7 is the
learning rate and b means the batch. Finally, every participant
returns his w, weights, to the server.

W =W — nVL(W;b) )

On the one hand, the federated learning can effectively enrich
the diversity of training set and allow more data to participate
in calculations. On the other hand, the federated learning
allows data to be stored locally, which meets some data-
sensitive requirements, such as medical and military scenarios.
But this does not mean that privacy will not be a problem
in federated learning. Inference against a certain participants
data and output greatly threatens the security of the federated
learning.

B. Generative Adversarial Networks

Generative adversarial nets (GANs) were first proposed
by Goodfellow [26], which is a neural network trained in
an adversarial manner. GANs contain two competing neural
network models. One is a generator G that draws random
samples z from a prior distribution (e.g., Gaussian or uniform
distribution) as the inputs, and then G generates samples from
z. Another model is a discriminator D. Given a training set, the
discriminator D is trained to distinguish the generated samples
from the training (real) samples. Eq. 3 shows the objective
function of GANs.

m(}n max V(D,G) = Epnpyoya(x)log (D(x))]
+E.np.(2)[log (1 — D(2))]

The P4, and P, denote the training (real) distribution and
prior distribution, respectively. These two models G and D
are trained alternately until this minimax game achieves Nash
equilibrium, where the generated samples are difficult to be
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discriminated from the real ones. Theoretically, the global
optimum is achieved at Pyqiq = Py [26], where Py indicates
the distribution of generated samples.

C. Assumptions

As done in previous works, before participants start training,
they will declare the labels of the data they hold. In fact,
this behavior does not reveal valuable privacy about training
set. Because the label cannot reflect the attributes of the data.
Our scheme is based on a preliminary assumption that the
sample labels owned by participants do not overlap. Taking the
MNIST data set as an example, we assume that participant P;
has data samples with labels ‘0’, ‘1’ and °5°, participant P, has
data samples with labels ‘2’ and ‘7°, and so on. In this case,
the declared label ‘1’ cannot reflect the attribute of digit ‘1’
in the picture, such as whether the font is inclined to the right
or the left. The purpose of this non-intersecting setting is to
facilitate the attack model to compare the results of the attack
with the previously declared information to implement the
membership inference attack. For example, training medical
data, in order to enrich the training set, different hospitals label
the data according to their different pathological information.
In this way, the federated model can obtain more pathological
classes. Of course, there should be samples with the same label
between different hospitals. The membership inference in this
case will be discussed in Sec. VI

D. Threat Model

Here, we will elaborate on the conditions that the adversary
has.

Adversary’s objectives. In our settings, the ultimate objec-
tive of the adversary is to obtain indirect information about the
target victim’s dataset. So, we set two indexes in the context of
classification tasks to evaluate our attack model: (1) member-
ship inference accuracy: means the classification confidence
of the target dataset; (2) main task accuracy: denotes that
the global model should maintain a high prediction accuracy
without overfitting.

Adversary’s observations. Here we will introduce a white-
box model to illustrate that what the adversary observes is
sufficient to launch the inference attack. Since the server
distributes updated models to various participants during each
iteration, the adversary will keep the latest model snapshot
with him. Therefore, everything of the global model is exposed
to the adversary, such as the structure of the model, the
algorithm L, and the parameters 6 of multiple versions. This
is beneficial for us to use GANs to launch the membership
inference attack. The details of our proposed scheme will be
introduced in the next section.

Adversary’s Capabilities. In this topic we will list what the
adversary can do and cannot do to assess his capabilities. On
the one hand, the adversary can (1) have a snapshot of each
updated model; (2) fully control his local data and training
procedure; (3) arbitrarily modify the hyper-parameters; (4)
randomly select local parameters updates over communication
rounds. On the other hand, the adversary cannot (1) know

the gradients uploaded by other participants because of the
average algorithm at the server-side; (2) directly access other
participants’ local data.

IV. PROPOSED MEMBERSHIP INFERENCE ATTACK

In this section, we describe the detail of the user-level mem-
bership inference attack in federated learning. Specifically, we
focus on a malicious situation in federated learning where a
participant is considered as an insider, who will go over the
server and directly differentiate the record’s ownership.

A. Attack Overview

Figure 2 overviews the attack method we designed. We
suppose that there are NN participants, where the victim V
is the target participant, and the adversary A is also on the
client-side. In the kth iteration, both A and V download the
same parameters 4. V normally uses parameters to update
the local training model, then performs training, and finally
returns the training update 6, to the server. Since the server
could average the parameters received from various partic-
ipants before updating the global model, it is hard for the
adversary to directly get clues of the target victim to launch
the membership inference. Therefore, we take GANs as a
tool for attack. Except using parameters for local training,
A will also copy the parameter 6, to discriminator D in
GANs for updating synchronously, so that the generator G
can continuously generate samples closer to the real samples.
These generated samples will be used to train the ultimate
attack model with the corresponding classification algorithm.
When the target dataset is obtained, the attack model will
predict results. If a sample whose prediction result is consistent
with the declaration information, we can judge it as ‘IN’,
otherwise judge it as ‘OUT".

B. Reconstruction Data with GANs

The goal of our data augment phase is to make the training
set for the attack model complete. The structure of GANs and
details of the data augment phase are shown in Figure 3. The
generative network ¢(z;6¢) is initialized and generates data
records from a random noise. In the discriminative network
f(x;0p), the discriminator D is initialized with the global
model. In this way, replacing the network parameters of D
with global model parameters is equivalent to training D
directly on the overall training data. Let z; be the original
image in the training set, 4., are generated images. We apply
the optimization algorithm based on the approach proposed by
Goodfellow et al. [26] and formulate the problem as:

TL+ n_—
rgci;n r%gx; log(f(xs; HD))-i-; log(1—f(9(2gen; 0c);0p))
B - 4)

Lo(0y) = E.npz)[log(D(G(2)))] (5)

The generator G wants to generate samples x,, of class m,
which belongs to one of the training set. The G yields zger,
to discriminator D. If D can classify x4., as class m, then
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the data augment phase sets x,, < Zgen and returns x,,.
Otherwise, it will update the generator G to minimize its
loss L5(0y) as shown in Eq. 5. The pseudocode of the data
augment phase is shown in Algorithm 1. We first initialize the
generation network G, and use the current federated learning
model as the discriminator D to calculate the gradient to
distinguish the generated data from the original data. Until
that the discriminator is unable to distinguish the generated
data, we get the eligible generated samples 2 gep,.

C. Attack Algorithm

The pseudocode of the attack phase is shown in Algorithm
1. After generating samples with all labels, we begin to train a
classification model. The selection of the inference algorithm
can be determined after analyzing the specific generated sam-
ples as we described in Sec. VI. In our experimental scenario,
we take the MNIST dataset as an example, and we use the
CNN model accordingly. After the model training is com-
pleted, the adversary launches the membership inference attack
against a bunch of data, named target dataset, which contains

the training data of the victim and other participants. After
the attack is over, we compare the prediction result with the
label information declared by victim. The data with the same
comparison result is regarded as the victim’s training data,
marked as ‘IN’. Other data, which has different comparison
results, are marked as ‘OUT’. To calculate the accuracy of our
membership inference attack, we divide the number of data
marked ‘IN’ by the number of victim’s data in target dataset.
Detailed experimental results are presented in the next section.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed methods, including
GANs and the membership inference, in different ways.

A. Datasets and Evaluation Goals

We construct GANs and a classification task with two
datasets, which are MNIST and CIFAR-10. Details of these
datasets are described in the Table 1.

e MNIST: This dataset includes ten classes of handwritten

digits from ‘0’ to ‘9’, which is widely used for training
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Algorithm 1 Attack Procedure.

Input: The GANSs iteration round ,,,,, the federated learning
model f(), generator (G, discriminator D.

Qutput: The generated dataset D9°":(x,y) and the inference
result ‘IN’ or ‘OUT".

1: Procedure Adversary Execution.

2: Initialize G

3: Set D+ f()

4: for (1 = 1;i <= tmaszsi + +) do

5:  Run G to generate sample Tgen

6:  Update G based on Eq 4

7: end for

8 y=f (xgen)

9: Output: D" : (x,y)

10: Dirgin, = DI (v, )

11: Attack Phase:

12: Train CNN model using D72 dataset.

13: Perform membership inference attack against D479
dataset.

14: Compare the inference results with the claimed informa-
tion.

15: Output: Mark every record as ‘IN’ or ‘OUT’, where

‘IN’represents the Victim’s training sample.

TABLE I
SUMMARY OF DATASETS USED IN OUR EXPERIMENTS
Dataset | Labels | Input Size ’é‘rammg Testing
amples | Samples
MNIST 10 28%28%*1 60000 10000
CIFAR 10 32%32%3 50000 10000

and testing in the field of machine learning. It is com-
monly used in training various image processing models.
Total of 70,000 images are divided as the training set
(60,000 images) and the testing set (10,000 images). The
grayscale image is normalized into 28 x 28, total of 724
pixels [27].

o CIFAR-10: It consists of a training set of 60,000 images
and a testing set of 10,000 images with 32 x 32 pixies in
ten classes. These images are mainly cats, dogs, horses,
etc [28].

To comprehensively illustrate our proposed attack model,
we set the following two goals: (1) mimic data generation:
means the effectiveness of our proposed data augment al-
gorithm using GANS; (2) attack success rate: indicates the
accuracy of our membership inference in federated learning
settings as we described in Sec. IV. Especially, the main task
accuracy is the ratio of the correct classification of all samples
through global model.

B. Experimental Settings

We implemented the data augment and the membership
inference in federated learning by using the PyTorchl.0,
Tensorflow2.0 and Keras framework. All experiments are done
on an RHEL7.5 server with NVidia Quadro P4000 GPU with

TABLE 11
NEURAL NETWORKS STRUCTURE
Classifier MNIST CIFAR-10
Conv2D(16,5,5)+ReLU | Conv2D(32,3,3)+ReLU
MaxPooling2D(2,2) Conv2D(32,3,3)+RelLU
Conv2D(32,5,5)+ReLU MaxPooling2D(2,2)
Structure MaxPooling2D(2,2) Conv2D(64,3,3)+ReLU
FCL(1000)+ReLLU Conv2D(64,3,3)+ReLU
FCL(10)+Softmax MaxPooling2D(2,2)
FCL(512)+ReLU
FCL(10)+Softmax

32GB RAM, and Ubuntu 16.04LTS OS. The Python version is
3.6. We set up five participants, one of whom is assumed as the
adversary, while the remaining participants are benign. They’re
all subordinate to the same central server. In each round of
the federated training, participants’ local models are trained
separately. Then they synchronously upload their updates into
a new global model.

Model and Training Configurations: Considering the
dataset used in our experiments, we applied a CNN-based
model architecture to construct our membership inference
classifier. Table II shows the neural network structure for two
datasets. The model of MNIST consists of two convolutional
layers and two dense layers. The kernel size of these con-
volution layers is 5 x 5. The number of filters for the first
convolutional layer is 16 and for second convolution layer is
32. The model for the CIFAR-10 dataset is set up as shown
in the table II. There are four convolutional layers with the
3 x 3 kernel size and 32 x 32 input shape. The number of
filters for the first two convolutional layers is 32 and for the
other convolution layers is 64. The activation function applied
to all the neural network models is ReLU.

The training configurations for two datasets are: participants
train MNIST dataset for epoch E = 30 with the initial learning
rate 7 = 0.01 and participants train CIFAR-10 dataset for
epoch £ = 60 with the initial learning rate n = 0.0001.
Besides, we run all the experiments for 400 communication
rounds of the federated learning.

C. Performance of Data Agumentation

To illustrate the effectiveness of the data augment phase
using generative adversarial networks (GANs) in federated
learning protocol, we visualize the process of sample recon-
struction. The total number of participants and the samples are
not changed. The generator GG is formatted as random noise
with 100 lengths and its output size is reshaped to 28 x 28.
In addition, we set the adversary to start generating samples
after the global model accuracy reaching 93%.

Figure 4 shows the visualization images of sample recon-
struction as the number of iterations (communication rounds)
increases. We show the reconstruction results of 400 iterations
of the MNIST dataset, as well as extracted real samples. As
shown on the left, the blurred contours of the reconstructed
samples of 100 iterations can be recognized. As shown in
the middle, in 400 iterations, the contours of the generator
samples become clearer, because, with the update of the
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Fig. 4. Reconstruction of MNIST based on GAN
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discriminator D, the performance of the generator G becomes
better. Therefore, by deploying GANs, the adversary can
successfully simulate real samples of all participants like the
image on the right.

D. Performance of Membership Inference

In the membership inference evaluation, the indexes are the
accuracy of the membership inference and the main task.

The accuracy of models based on MNIST and CIFAR-10
reaches 99.45% and 93.71% as shown in Figure 5, respec-
tively, which is accurate enough to complete the main task of
correctly predicting all testing data.

Simultaneously, as mentioned before, the adversary has
gotten enough fake samples through a locally deployed GANs
and trained the attack model. After the membership inference,
we evaluate the attack from the perspective of the label. Figure
6 illustrates our attack effectiveness on the two datasets, where
TP means true positive and FN means false negative. We
take the number of labels each participant has into account,
supposing that the victim holds data with more than one label,

B TP of MNIST FN of MNIST ®TP of CIFAR-10 ®FN of CIFAR-10

100

80

60

40

Inference Number

one label one label two labels two labels three label three labels five labels five labels
Number of Labels

Fig. 6. Effectiveness of inference task

which may disrupt the membership inference. We observe the
effectiveness of attacks under the conditions of one label, two
labels, three labels, and five labels. As can be seen that when
participants hold more data classes, the effectiveness of the
membership inference is worse. We also draw an ROC curve
based on the membership inference attack performance against
the two datasets, where the variable is still the number of
labels. Figure 7 and Figure 8 show that when the target victim
owns one or two labels around, we can accurately mark the
member data as ‘IN’ and the non-member data as ‘OUT’.
Next, we will try to solve the problem of how to improve
the accuracy of membership inference when the victim or
participants hold data with multiple classes.

To highlight the advantages of our scheme, we compare
the scheme with the active inference attacks based on the
SGA method designed by Nasr et al. [7]. The inference
accuracy of experiments based on the SGA method can reach
about 76% on the CIFAR-100 dataset, which is close to the
case where the participant holds one label in our CIFAR-10
experiment. But the biggest innovation is the attack objective.
Nasr et al. [7] stated that the local adversary performs the
inference against all other participants. In other words, this
is the membership inference for the entire training data of
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the federated learning, not specific enough. Our method can
directly launch an inference attack on an individual participant
from the local adversary.

VI. DISCUSSION

This paper focuses on the scenario of data instances where
different participants do not have the same class. This is rea-
sonable because, in the federated learning scenario, there are
cases where different participants uphold a common training
objective but possess very confidential (not shared) data with
different labels. For example, if multiple variants of a virus
are found in different countries and research institutions are
reluctant to share data records with other foreign virologists
for analysis, the federated learning can play a huge role. At
this time, the data with different labels are scattered across
countries without any overlap, which is in line with our
hypothetical scenario. Of course, the more general scenario
is where many participants have some data with the same

label. Such an assumption can be relaxed by solving the
key difficulty that when using GANs, how can an adversary
distinguish the data that approximates the victim’s having from
the generated data. One potential solution is to extract other
‘non-target features’ of the participants as the distinguishing
elements [29], which needs to be analyzed based on specific
data. As a common example, the federated learning training
bases on a globally distributed face dataset and the target rep-
resentative is ‘whether wearing glasses or not’. At this point,
the face samples from the target area can be further filtered
according to ‘complexion’. Accordingly, the key feature of
the membership inference model is changed to ‘complexion’.
Another possible solution is the ‘conspiracy’ that the server
is colluding with the adversary or multiple adversaries are
colluding. Demonstrating the feasibility of these solutions will
be put into our future work.

As for the defense method of the attack, we envisage
that the declaration information can be encrypted before the
participants start training. Except for the central server, the
participants do not know the label information between each
other. In this way, it is difficult for the adversary to distinguish
the ownership of data labels.

VII. CONCLUSION

This paper aims to explore an active and targeted mem-
bership inference attack model in the federated learning
scenario. We proposed a fine-grained membership inference
method, called the user-level membership inference. Given
the traditional membership inference in the centralized and
distributed learning, we release the assumptions of some
previous researches and launch membership inference from
the client-side against a specific participant. In order to solve
the problem of privacy protection of the federated learning,
where the server will average the received parameters from
all participants, we propose a data augment method using
GANSs to obtain the high-quality generated samples with all
labels. Through the extensive experiments on two classic
datasets, MNIST and CIFAR-10, we manage to prove that our
proposed membership inference attack model can successfully
compromise the victims privacy in user-level.

At last, we discuss the hypothetical premises of this paper
and come up with some possible ideas. In future work, we
will study these promising aspects, especially the duplicated
samples in the training sets, to prove their rationalities through
experiments.
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