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Abstract—In the era of cloud computing, many applications are
migrated to public servers not fully controlled by users who may
fear their critical operations or data from being compromised by
attackers. Previous studies have shown that Intel SGX enclaves
can improve applications’ security in many market products. Yet
they mainly rely on developers to reprogram and recompile the
application into an SGX-aware version. To address this problem,
we propose SAPPX, an SGX-based program retrofitting method
that can automatically partition COTS application binaries into
two parts without breaking the original program semantics.
The first part of the application runs in user space, while
the second part is executed in an SGX enclave to protect the
user’s sensitive information. We have implemented a prototype
of SAPPX on x86/Linux platforms and evaluated its performance
using real-world applications and SPECCPU 2017 benchmarks.
The experimental results show that the average overhead of the
proposed approach is up to 19%.

Index Terms—Partition, Intel SGX, Security enclave, COTS
binary

I. INTRODUCTION

Due to the significant benefits of cost efficiency, service

agility, easy accessibility, and good scalability, offloading

computation into public cloud/edge centers has become a

prominent trend nowadays. Many government agencies and

small business owners desire to migrate their applications

to public cloud/edge platforms but still fear their critical

operations or data from being compromised by attackers. A

significant concern is that the infrastructure of the cloud/edge

is not fully controlled by the customers who use the cloud/edge

services. Hence, applications should be designed to protect

sensitive data from being corrupted or stolen by privileged

attackers. Although Fully Homomorphic Encryption (FHE)

provides an excellent potential to secure applications running

in untrusted environments as data are not required to be

decrypted in memory to perform computation, speed and

limited function support are major bottlenecks that prevent

existing FHE schemes from being practical [1].

Intel Software Guard eXtensions (SGX) [2] is one of the

promising solutions to secure applications in public cloud/edge

centers. In 2017 Microsoft Azure [3] first used SGX to em-

power confidential computing services. Now SGX has become

the mainstream solution for confidential computing services

such as Aliyun, Baidu MesaTEE, and IBM Data Shield [4].

The core idea of SGX is creating an “enclave” which is a

Hao Han is the corresponding author.

separated and encrypted region for running code and data.

Intel SGX provides transparent memory encryption based on

hardware to isolate the enclave from the external untrusted ex-

ecution environment. The code/data located in the enclave are

only decrypted inside the processor, so code/data integrity and

confidentiality are ensured to the application even if the RAM

is being read directly [5] or the privileged operating system

and hypervisor outside the enclave are compromised [6].

Previous works have demonstrated the feasibility of exe-

cuting ordinary applications for SGX within enclaves. For

instance, Haven [7] intends to put the entire application into

an enclave and has proposed a library-based approach to

support unmodified binaries using SGX. This work predates

the availability of SGX hardware, followed by SCONE [8],

Graphene-SGX [9], and Panoply [10] seeking to improve the

different aspects of efficiency on real SGX hardware.

Since not all library functions (e.g., file I/O operations:

fopen) can be executed inside an SGX enclave, these ap-

proaches must load a series of supporting libraries into the

enclave, resulting in a huge trusted computing base (TCB).
However, the resources of the Secure Space are limited and

cannot be dynamically resized. In Intel SGX, the memory area

used for storing code and data is called Enclave Page Cache

(EPC), and the maximum size of an EPC is 128MB. Besides,

the size of the Secure Memory of ARM TrustZone [11]

and SEV Encrypted Memory of AMD SEV [12] need to

be distributed in advance. Improper sizing could make the

security containers inefficient.

To reduce the TCB size (i.e., security risks), Glamdring [13]

splits applications’ source code into different components and

only loads the sensitive part into the enclave. To support

legacy binary code, Wang et al. [14] extends an existing open-

source binary reverse engineering platform (Uroboros [15]) to

enable the SGX instrumentation. Yet it is still unclear what

functions should be put into the enclave for protection given

an application. In addition, not all applications can be reverse-

engineered perfectly by existing “disassemble-reassemble”

tools, thus significantly reducing the applicability of those

approaches.

To solve these problems, we propose a new approach for

Securing COTS application binaries with Automatic P rogram

P artitioning using Intel SGX technology, dubbed SAPPX.

With the minimum human effort to mark sensitive input data to

the program, such as parameters or authenticated files involved
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in the program, SAPPX automatically determines a set of

functions that should be placed inside an SGX enclave for

protection. To reduce the runtime overhead of the partitioned

program, SAPPX is responsible for adding or removing cer-

tain functions from the set. To overcome the drawback of

binary rewriting, SAPPX leverages the idea of malware (e.g.,

virus) injection technique and creatively generates an SGX

wrapper for the original application binary. We implemented

a prototype of SAPPX and evaluated the system with real-

world applications, including OpenSSL and thttpd, as well as

SPECCPU 2017 benchmarks. The experimental results show

that when the original application is retrofitted with security

guarantees provided by SAPPX, the extra time consumed to

execute the partitioned application is 0.1-0.3 times of the

original version.

This work makes the following contributions:

• We designed a binary dependency analysis method that

automatically determines a minimal set of sensitive func-

tions to run inside an SGX enclave from user annotations.

We also designed a boundary optimization algorithm to

adjust the set size, making the partitioned program incur

an affordable runtime overhead.

• We proposed a new approach to partitioning COTS appli-

cation binaries into two parts: running in user space and

an SGX enclave separately. A new binary infection tech-

nique is developed to fill the generated SGX library with

original program binaries and preserve their semantics.

• We implemented and evaluated a prototype of SAPPX us-

ing benchmarks and real-world applications. Experiment

results show our approach can achieve a small TCB at a

reasonable overhead.

The rest of this paper is organized as follows. Section II

describes the background of Intel SGX and how it protects

applications from data-flow attacks with a motivating example.

Section III presents the design of SAPPX and its security

guarantees. Section IV presents the evaluations. Section V

discusses the limitations in detail. Section VI reviews the

related work, followed by conclusions in Section VII.

II. BACKGROUND AND THREAT MODEL

A. Motivating Example

For ease of understanding, we use a motivating example

throughout the paper. The following code snippet is modeled

after a web server that loads the private key privKey of

the website through loadPrivKey and uses it to establish a

connection with the client by GetConnection. The user input

userInput is checked, and the corresponding file content will

be retrieved by getF ile and sent back to the client. There is

a stack overflow vulnerability in getF ile, through which the

privKey may be stolen by maliciously designed userInput.

1 void getFile(char *reqFile, char *output){
2 char fullPath[BUFSIZE] = "/path/to/root/", *

result;
3 strcat(fullPath, reqFile) ;
4 // stack buffer overflow
5 result = retrieve(fullPath) ;
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Fig. 1: Comparison between the non-partitioned model and SAPPX.

6 sprintf(output,"%s:%s",reqFile, result);
7 }
8 int server() {
9 char *userInput, *privKey, output[BUFSIZE];

10 privKey = loadPrivKey("/path/to/privKey");
11 GetConnection(privKey, ...) ;
12 // connection using privKey
13 userInput = read_socket() ;
14 if(checkInput(userInput)) {
15 // user input OK , parse request
16 getFile(getFileName(userInput), output);
17 sendOut(output);
18 }
19 }

If putting server into a trusted space, the stack of function

getF ile, where the overflow occurs, can never reach the

area where the privKey locates. Therefore, we believe that

program partitioning is an effective way to avoid such an

overflow and many other malicious attacks.

B. Trusted Execution with SGX

CPUs that support Intel SGX reserve a portion of memory

space in DRAM, known as Processor Reserved Memory

(PRM) [16]. The CPU protects this area from all instruction

accesses from non-enclave memory, including kernel access,

virtual machine manager, system management mode, and

DMA accesses from peripherals. The most important part of

the PRM area is the EPC, which consists of several 4 KB

pages that store user-defined enclave code and data. If putting

more code and data into an enclave (see left of Fig. 1), we will

face a longer time to initialize the enclave and switch between

user space and the enclave. That is why existing approaches

that run an entire application inside an enclave often have

unacceptable runtime performance. A better idea is to develop

an SGX-secured application from scratch so that only critical

or trusted components are executed inside an SGX enclave.

As shown in the right of Fig. 1, the communication between

user space and the enclave is achieved through Enclave Enter

Call (Ecall) and Enclave Outer Call (Ocall) interfaces.

C. SGX-Secured Application

Programmers can use the Intel SGX SDK to develop

an SGX-secured application by providing Enclave Definition

Language (EDL) file(s), user space source file(s), and enclave
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source file(s). The EDL file contains the declarations of Ecalls

and Ocalls, while their implementations are written in the

enclave source and user-space source files, respectively. The

edge8r tool – a text interpreter will generate user proxy

functions for the programmer to invoke in the application’s

source code. For example, to secure the motivating example

using SGX, an EDL file defines the function server in Enclave

and the function getFile in user space. The local call of getFile
at line 16 should be replaced by the generated proxy Ocall

sgx_status_t getFile(&ret, args...).

D. Threat Model and Assumptions

The goal of adversaries is to steal or modify users’ confiden-

tial data without being noticed. An example adversary includes

a malicious system administrator who controls the hardware

and software of the machine on which the application is exe-

cuted. We assume he can (i) access or modify data in memory

or on disk (ii) monitor the execution path of the program; and

(iii) modify the services provided by the operating system.

We assume that an attacker cannot exploit any function with

security vulnerabilities isolated in an enclave. For example, if

function server of our motivating example is placed inside an

enclave, attackers cannot peek into this execution stack and

trigger the overflow attack. In addition, we do not consider

malware running in the enclave to leak sensitive data or

compromise the integrity of the code in the enclave.

We do not consider denial-of-service (DoS) attacks because

there is no information leakage if the service is not provided.

Side-channel attacks that use page faults are also out of the

scope of this paper since enclaves cannot resist such attack

alone [17]. We can rely on existing countermeasures [18], [19]

for detection or mitigation.

III. SYSTEM DESIGN

To use the proposed SAPPX, users first annotate their

sensitive data fed to the application, such as a key file for

encryption or specific content in a configuration file. The

output of the SAPPX is the retrofitted application with two

partitions: the sensitive library running in an SGX enclave

and an executable running in the user space. The SAPPX is

designed to fulfill the following needs: 1) Finding a minimal

set of sensitive functions that run in an SGX enclave; 2)

Converting the original program to an SGX-secured version

while preserving the program semantics; and 3) Imposing an

acceptable performance overhead.

The workflow of SAPPX is shown in Fig. 2. Given the

annotated input data, SAPPX uses symbolic execution with

data flow analysis to determine a set of functions that will

process those sensitive data. Simultaneously, each function’s

invocation cost (bytes of parameters and return) is estimated.

Then, a boundary adjustment algorithm is proposed to move

functions in/out of the above set to ensure compatibility and

reduce the runtime overhead. Next, an SGX-secured version

of the application is generated automatically. This application

adds corresponding Ecall and Ocall interfaces and an SGX-

compatible wrapper of the original program. Finally, the pro-

posed binary infection method fills the generated application

with the original binary code.

A. Binary Analysis Phase

SAPPX analyzes how the sensitive data are flowed among

functions and determines a minimal set of relevant function-

s/data that should be placed in an SGX enclave. To support

the analysis, we define a Colored Data Flow Graph (CDFG),

where a vertex represents a function or a globally allocated

memory object (e.g., global variables, program arguments, and

syscall returns), and an edge indicates the existence of data

flow between connected vertices. When a function reads or

writes the sensitive data, the corresponding vertex in the graph

is colored. Note that we do not consider the indirect data flow.

For example, if x is sensitive, we will not mark y as sensitive

given the statements if x == a then y = 1 else y = 0.

The process of building the proposed CDFG is as follows:

We first leverage existing static binary analysis methods [20]–

[22] to compute the program’s Call Graph (CG). However,

existing static binary analysis tools can only produce an

approximate CG due to the presence of indirect calls. Thus,

the resulting CG may be incomplete. This problem is detected

and fixed by dynamic analysis and runtime testing later. The

detail is discussed in Section V. On top of CG, all global/static

memory objects are added as new vertices, where all registers

and memory addresses related to the annotated data are marked

as initial tainted sources. Next, we use dependency analysis to

mark other dependent tainted sources, including control and

data dependency. To track the propagation of these tainted

sources, we transform every source into a symbolic variable

and use symbolic execution to cover as many branches as

possible. This allows us to obtain a fine-grained data flow

graph, including intra- and inter-functional data flows.

In the CDFG, all functions in the application are split into

two sets: a tainted set Se for an SGX enclave and an untainted

set Su running in the user space, respectively. All memory

objects referenced by functions in Se are denoted as the set G.

Since they may exist in both user space and enclave, SAPPX

synchronizes them as they enter and leave the enclave. In

addition, we define an Ecall set Fe and an Ocall set Fo as

follows:

Fe = {fj ∈ Se : ∃fi ∈ Su, s.t. fi → fj}

Fo = {fi ∈ Su : ∃fj ∈ Se, s.t. fj → fi}
Note that Fe ⊆ Se and Fo ⊆ Su.

Fig. 3 shows an example of the CDFG. In this example,

data1 and data2 are annotated as sensitive variables. Since

f1 and f2 directly use data1 and data2, these two functions

are also colored. Suppose f1 passes data1 to f3 but not to f4,

thus f3 is colored while f4 is not. Additionally, we may color

extra functions such as f8 and f9 for performance issues (see

Section III-B for detail). Finally, the resulting sets are Se =
{f1, f3, f2, f8, f9}, Su = {f0, f4, f5, f6, f7}, Fe = {f1, f2},

Fo = {f4}, and G = {data1, data2}.
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B. Boundary Adjustment Phase

In the boundary adjustment phase, we move functions from

Su to Se or vice versa, adjusting Fe and Fo accordingly. The

goals of this phase are twofold: 1) To reduce the frequency

of enclave boundary crossings to reduce the performance

overhead, and 2) to solve the incompatibility issue that some

functions are not supported in an SGX enclave. It yields two

constraints as follows:

• Constraint 1: Incompatibility. Since the SGX enclave

does not support all x86 machine instructions [23], such

as some privileged instructions and I/O instructions, the

function containing these instructions must be removed

from Se to Su. They are denoted as Slimit. Also, we

need to exclude some complex functions from Fe and

Fo to avoid potential runtime errors. For example, some

functions with nested pointers as arguments are difficult

to analyze their memory boundary correctly. These func-

tions are denoted as Flimit.

• Constraint 2: Performance. We need to move some

functions from Su to Se to avoid making E/Ocalls, since

E/Ocalls often incur large runtime overhead [24]. To

estimate the cost, we use the dynamic binary instrumen-

tation tool Pin [25] to run the program under various test

cases and record the number of bytes passed between

caller and callee functions and their function size. For

any fi → fj ∈ CDFG, we define mij and Bij as the

number of invocations and the average data size passed

between the caller and the callee, respectively. If such

a call were made through an O/Ecall interface, the cost

could be estimated by:

costE/Ocall(fi → fj) = α ·mij ·Bij + β, (1)

where α is a proportional factor and β is extra overhead

for updating the SGX status. If the cost is too large,

we consider moving fj from Su to Se to reduce the

overhead. Adding a function in Se does not violate

security properties but increases the enclave’s TCB size.

The formula for calculating the TCB size is as follows:

size(TCB) =
∑

fi∈Se

size(fi) +
∑

gi∈G

size(gi) (2)

Given the above constraints, Algorithm 1 shows the pro-

posed approach to find a quasi-optimal partition set in poly-

nomial time. In the algorithm, lines 2-9 adjust the initial Se

and Su within Constraint 1, and lines 11-22 search the space of

partitioning strategies in the first fit order to handle Constraint

2. Since we want to exclude Slimit and Flimit, we assign

the infinite cost to functions in Flimit and the infinite size to

size(fi) where fi ∈ Slimit.

In particular, Slimit are removed from the initial sensitive

set Se to Su, and then Fe and Fo are re-calculated accordingly.

Any function that makes an Ecall/Ocall to Flimit is moved to

Se to eliminate the incompatibility until there are no unsuitable

functions in Fe and Fo. After this adjustment, the total cost is

computed using Eq.(1) and Eq.(2) at line 10. Next, for each

Ecall fj → fi, we estimate if adding the inbound function

fj into an enclave could reduce the total cost. Similarly, for

each Ocall fi → fj , we search the outbound function fj that

could be merged into the enclave to avoid frequent switching.

To balance the cost of passing parameters and the function

size, the weight is heuristically set to 0.5. Note that we define

only up to two layers of boundary adjustments to prevent

moving all functions into the enclave. After the optimization,
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Algorithm 1 Boundary Adjustment

Input: Initial Se, Su, CDFG, Slimit, Flimit, weight ω
Output: Optimized sets S′

e and S′
u.

1: repeat
2: Se = Se − Slimit;Su = Su + Slimit;
3: Re-calculate Fe and Fo from Se and Su;

4: while {fj |fj ∈ Flimit ∩ (Fe ∪ Fo)} �= ∅ do
5: Se = Se + {fx|∃fx ∈ Su : fx → fj ∈ Fe};
6: Se = Se + {fj};
7: Update Su, Fe, Fo according to Se;

8: end while
9: until (Slimit ∩ Se = ∅) & (Flimit ∩ (Fe ∪ Fo) = ∅)

10: Tcost = ω ·∑ costE/Ocalls + size(TCB);
11: for fi ∈ Fe do
12: if ∃fj ∈ Su, fj → fi ∈ CDFG s.t. adding fj into Se

reduces Tcost by Δ > 0 then
13: Se = Se + {fj};Su = Su − {fj};
14: Update Fe, Fo, Tcost;

15: end if
16: end for
17: for fi ∈ Fo do
18: if ∃fj ∈ Se, fj → fi ∈ CDFG s.t. adding fi into Se

reduces Tcost by Δ > 0 then
19: Se = Se + {fi};Su = Su − {fi};
20: Update Fe, Fo, Tcost;

21: end if
22: end for
23: S′

e ← Se;S
′
u ← Su;

we determine what functions will run in enclave (Su and Se)

and their boundary functions for Ecalls/Ocalls (Fe and Fo).

C. SGX Code Generation Phase

With the adjusted partitioning sets, the next step is to create

an SGX project from which we can automatically compile and

generate an SGX-secured version of the original program. The

EDL file in the project includes the declaration of functions

in Fe and Fo. We need to reconstruct the function type from

the program binaries to declare those functions in a higher

programming language, such as C/C++. If any function has

a pointer-type parameter, the boundary information of such a

pointer is also defined in the EDL file so that SGX knows the

exact amount of memory to copy in and out of the enclave.

1) Recovery of the function: The function information that

needs recovery includes the number of parameters, their types,

and the return value type. The function name is not essential.

The recovery of the exact function from the program binary

is still an open problem that has never been fully solved. We

do not derive the same type as declared in the source code.

Instead, we attempt to reconstruct the number of parameters

and their type widths such that the compiled binary uses the

same registers and stack to pass parameters.

According to the calling convention of x86-64 [26], argu-

ments may be passed through REGISTER and/or MEMORY.

When the number of registers is not enough for storing

1 struct array{
2 int arr[20];
3 };
4

5 typedef struct d{
6 struct array a;
7 float c, d;
8 char e, f;
9 } data;

10

11 int test(data s,
12 float c) {
13 return
14 s.a.arr[10] +
15 (int)c;
16 }

(a) Source code

1 <test>:
2 push %rbp
3 mov %rsp,%rbp
4 movss %xmm0,-0x4(%rbp)
5 mov 0x38(%rbp),%edx
6 movss -0x4(%rbp),%xmm0
7 ...

(b) Usage of arguments

1 struct stack_44{
2 int arr[11];
3 };
4 ret_t test(stack_44 a0,
5 float a1);

(c) Recovered parameters

Fig. 4: Example of recover parameter types

arguments (e.g., integer argument registers rdi, rsi, rdx, rcx,

r8, r9, and floating point argument registers xmm0-xmm7)

or the argument width is too long (e.g., a structure containing

a data of 128bits or more), the caller will store the arguments

on the stack every eight bytes. Similarly, the return value is

passed using return registers or callee-saved registers like rax
and rdx. Hence, how arguments are stored and used at call

targets and call sites can be used to infer parameter count and

types. We adopt the method proposed in τCFI [27].

By statically analyzing the use of parameter registers and

the use of the stack from the called side, we can recover all

the register parameters and stack references. In Fig. 4(b), we

can notice that callee references the offset of rbp at 0x38,

which means that there is a MEMORY type parameter access,

so we calculate the maximum positive offset like this to get

the size in bytes of the parameter passed using the stack. In

this example, the bytes of stack parameters are (0x38 + 4(size

of edx) - 0x10 (size of old rbp + return address) = 0x2C). The

recovered argument type in Fig. 4(c) differs from the original

source program in Fig. 4(a), but this is the maximum offset

that can be used by callee.

2) Pointer’s boundary: If a function has parameters of

a pointer type, we need to tell SGX which parameters are

pointers and their memory location/size through the EDL file

to copy data into/out of the enclave. From program binaries,

it is relatively easy to identify a pointer by searching for the

offset and dereference instructions. However, it is difficult to

determine the actual memory size a pointer points to because

pointers do not carry any boundary information. We combine

both static and dynamic binary analysis techniques to address

this problem. In x86-64, pointers locate data by indirect

addressing, the syntax of which can be simply summarized as

[base register + offset]. In simple terms, as long

as the base register holds the data to be analyzed, we consider

the data as a pointer type.

To get the actual offset of a pointer, we rely on the dynamic

binary analysis framework Triton [28], which can emulate

the execution of machine codes and monitor the memory
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addresses where they are being written or read. We mark

all memory addresses referenced by pointer parameters and

set non-pointer parameters as symbolic values. By recording

the reads and writes of the memory when a function is

invoked dynamically (i.e., intraprocedural analysis), we obtain

the offset of a pointer. The relationship between the pointer’s

boundary and the symbolic value is derived by changing the

symbolic values of non-pointer arguments. How to handle

nested pointers in a structure is discussed in Section V. SAPPX

applies interprocedural analysis to obtain the maximum offset

of pointer parameters in the interface functions of all Se.

Note that the pointer bounds derived from the analysis may

not precisely reflect the true bounds. They just indicate the

maximum memory offset to which the function(s) refer, and

these bounds provide an estimate of the range of values that

the pointers within the function(s) could take on.
3) Trampoline function: Firstly, the interface function de-

clared in EDL generates the proxy function in a form in-

consistent with the original function, as discussed in II-C.

Secondly, since global variables may be used separately after

the partition in both spaces, we need to synchronize them when

switching spaces. Besides, trampoline functions can also be

used to handle other concerns, such as function pointers as

parameters and calls to standard library functions.

We define the trampoline functions of Ecalls as follows:

1 // in User Space
2 ret_type TE0_function(argi, ...){
3 ret_type res;
4 // use Ecall user interface to enter enclave
5 TE1_function(eid, &res, argi, ..., global);
6 // error collection
7 return res;
8 }
9 // in Enclave

10 ret_type TE1_function(argi, ..., global){
11 ret_type res;
12 // syn global variable to enclave;
13 res = function_name(argi, ...); // real Ecall
14 // syn global back to user space
15 return res;
16 }

The parameter global is a generic term for the contents of G,

which needs to be synchronized into the enclave. The eid in

line 5 is a global variable that is initialized at the enclave

initialization phase and specifies the enclave’s id. Besides,

Ocalls also need trampoline functions in both spaces:

1 // in Enclave
2 ret_type TO1_function(argi, ...){
3 ret_type res;
4 TO0_function(&res, argi, ..., global);
5 // syn global variable to enclave;
6 return res;
7 }
8 // in User Space
9 ret_type TO0_function(argi, ..., global){

10 // syn global variable to user space;
11 return function_name(argi, ...);
12 }

We synchronize global variables before and after the execution

of Ecalls and Ocalls, i.e., before entering and leaving the

enclave. Over and above, we need to handle these issues:
Handle indirect calls. As discussed in III-A, existing call

graph analysis software (e.g., Angr [29] and IDA Pro [30].)

may not be able to analyze the complete call graph [31]

because there may be some indirect calls in the programs [32].

In the x86-64 assembly programming language, we know that

instruction call *%rax is the indirect call corresponding

to the machine code 0xffd0. Still, the value of the register

rax, i.e., the address of the target function, is not necessarily

in the specified space. The value of rax may come from the

argument, constant, or relocation. So, we handled indirect calls

in different cases:

• Arguments. For functions with a function pointer as

a parameter, we used the trampoline function (inside

enclave) to change the value of the argument by assigning

the corresponding function pointer within the enclave to

it or reporting ERROR to readjust the function sets.

• Constant and relocation. We applied backward slicing to

analyze the possible values of the rax register and then

use relocation items to fit them to III-D symbols of the

corresponding function. The results can be used to fill

CDFG, so the ERROR condition will not happen.

Handle memory allocation type library and other stan-
dard library functions. Enclave supports memory operation

library functions such as malloc and realloc. The memory

operation to allocate space for local variables and free them

within the function body is enough to use the memory library

functions inside the enclave. However, the memory allocated

for global variables or returned values still needs to exist

after the functions return to the user space, we use Ocall to

allocate the same size of memory from user space and maintain

a memory address correspondence table inside the enclave

which can be used to release the space allocated inside the

enclave and synchronize when we exit the enclave (at the end

of Ecall trampoline function inside an enclave).
Standard library functions are not completely supported by

SGX [23], and there are two cases to handle this difference:

(a) Not supported by SGX. For functions such as file manip-

ulations, we can use Ocalls to export the contents of the file

we need to process in user space or input to the enclave. (b)

Supported by SGX. We add the function directly to the symbol

table and reference it in the relocation, see III-D.
Due to the usage of untrusted OS library functions, attackers

who compromised the OS kernel can modify their return value

to force enclave code to leak or modify sensitive enclave

data. This type of attack is known as Iago attack [33]. These

Ocalls that we generate for library functions are the Iago attack

surface, so we perform a static derivation of the return value in

the trampoline function using the function provided by SGX

SDK: sgx_is_within_enclave() to determine whether

the address points to the enclave address space.
After adding trampoline functions to the project, we can

get the partitioned CDFG Fig. 5 obtained from part of Fig. 3

after partitioning. TE0 means the Trampoline of Ecall (E) in

user space (0). The TE0 f1 leads the partitioned application

into an enclave and synchronizes global variable data1 to the
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Fig. 5: Partitioned colored data flow graph with sensitive data marked.

copies in the enclave. When switching to user space via Ocall,

TO0 f4 can synchronize data1 back to user space.

D. Binary Infection Phase

We’ve gotten the SGX project with the required interface,

the next step is to fill the raw binary content into the SGX

project so that the working binaries preserve the functional

integrity of the original application. For the enclave part, we

rewrite the enclave relocation file, i.e. fill in the original code

and data content, and then use the relocation table to link

the bytes that need to be relocated with the data symbols.

As for the contents of user space, in order to ensure the

functional consistency of the partitioned program and the

original program, we use the infection to join the original

program with the SGX user program.

1) Rewrite enclave object file: Relocation is the process

of connecting symbolic references with symbolic definitions.

For example, when a program calls a function, the associated

call instruction must transfer control to the proper destination

address at execution. Relocatable files have data that describes

how to modify their section contents, thus allowing executable

and shared object files to hold the right information for a

process’s program image. Relocation entries are these data.

For each relocation table entry, we need to obtain the

subscript of the symbol in the symbol table to which the corre-

sponding relocation refers, the offset of the byte to be relocated

in that section, and the type of relocation (e.g., function call

or symbol reference). For convenience, to facilitate the calls

to some SGX-supported library functions, we added them to

the symbol table and string table.

As shown in Fig. 6, the COTS binary has the relative

addresses (line 2 and line 4) of all symbolic references in

the original code. Through the register rip we can know

where needs a relocation entry, and which symbol it links

to. We choose to populate the object file with the contents of

the original binary, so we need to collect all the relocation

information in the function body (such as function calls and

global symbol use) and the data or function to which the

relocation refers, and set the bytes to be relocated to 0x0.

Besides machine code and relocation entry, we also need

to put the data (including read-only data) to be used in the

1 ...
2 2d5f: 48 8d 35 ba 65 00 00 lea 0x65ba(%rip),%rsi
3 2d66: 48 89 c7 mov %rax,%rdi
4 2d6e: e8 8d e3 ff ff call <function>
5 ...

1 ...
2 48 8d 35 00 00 00 00 lea 0x0(%rip),%rsi
3 48 89 c7 mov %rax,%rdi
4 e8 00 00 00 00 call <function>
5 ...

Fig. 6: Rewrite example. Above is the original binary instruction content, and
below is the binary content that should be filled in the enclave object file.

corresponding section and add the name of library functions

into the symbol table and string table.

2) Infection: Based on the ELF binaries, we deconstruct
the generated SGX user binary and reassemble it with the

original executable file to get a working executable file that

can interact with SGX enclave and has the same functionality

as the original program. In Fig. 7, we infected the original

binary file (code and data) to the end of the .bss segment.

The main function of the original program is called after the

enclave has been created and initialized, which means that the

execution of the program follows the original logic completely.

In addition, we should pay attention to the calls to shared

library functions. Hence, the reassembled application needs to

fit these requirements:

Lazy binding. For dynamically linked applications, ELF

uses the Procedure Linkage Table (PLT) to implement lazy

binding, i.e., binding a function (variable) only when a certain

function (variable) is used, which can greatly speed up the start

of the application. But after infection, the pushed content in

line 7 may not be correct for the library functions. The function

dl runtime resolve() finds the address of the corresponding

function in the dynamic link library based on the relocation

information and puts it in the Global Offset Table (GOT), it has

two arguments: module ID, which is a fixed value as shown

segment table

T_Ecall

T_Ocall

main()

create Enclave

call original

data

bss

User Space

Ecall

call Ocall

Enclave

Ocall

main()

call Ecall

Original binary

infect

shared object file SGX user program

Fig. 7: Execution view of SAPPX project.
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in Fig. 8(b) and the index of relocation table which is n in

Fig. 8(a), so we need to modify n to a correct value.

Runtime check. For a dynamically linked executable file,

the segments (program header, code, data, read-only data)

of type PT_LOAD in the file are loaded into memory at a

randomized base address; the kernel then maps the dynamic

linker (DL) to the process address space and hands control

over to DL, after completing its bootstrap, it performs explicit

runtime linking, i.e., dynamically loading libraries needed by

the execution: opening the shared library dlopen, finding the

symbol dlsym, error handling dlerror, closing the dynamic

library dlclose. The dlsym is the core part, which checks all

the contents of the symbol table (not only functions but also

variables), so in order to ensure the partitioned program passes

the check, we need to make appropriate changes to the symbol

information and the corresponding shared library information

of the binary after the infection.

IV. EVALUATION

We have implemented a prototype toolkit of SAPPX in

C++, Python, and shell scripts, coupled with Pin, and Triton

framework. We use Pin to record the sequence of function

calls of the program during the trial run and functions’ offset

of read and write memory. Trition is used for emulating the

executions of binary code and recording the maximum offset

of pointer parameters.

To evaluate this prototype, we performed extensive experi-

ments using real-world applications and benchmarks to answer

the following questions:

1) Correctness (Q1): Can binaries preserve their program

semantics and function correctly after the partitioning?

2) Effectiveness (Q2): Can SAPPX improve the security

of COTS binaries?

3) Efficiency (Q3): How much performance overhead does

SAPPX impose on binaries for protection, compared to

other related approaches?

Due to the page limit, we report the experimental results of

some applications, including OpenSSL, thttpd, and SPECCPU

2017 benchmarks. All experiments were conducted on an

Intel(R) Core(TM) i5-8400 CPU running at 2.80 GHz and 12

GB of RAM. The CPU supports Intel SGX hardware mode.

SAPPX compiled the SGX projects with default optimization

flags and debug symbols in HW_PRERELEASE mode using

1 PLT0:
2 push *(GOT + 8)
3 jmp *(GOT + 10h)
4 ...
5 lib_func@plt:
6 jmp *(lib_func@GOT)
7 push n
8 jmp PLT0

(a) PLT

module_ID

_dl_runtime_resolve()

...

import lib_func

...

(b) GOT

Fig. 8: PLT modifying. (a) is PLT in the text segment, and (b) is the table to
store the address of the corresponding library function.

the G++ version 7.5.0 and Intel SGX SDK version 2.13. The

ld.so program used for dynamic linking was version 2.27.

A. Performance of Protecting OpenSSL (Q2 and Q3)

OpenSSL 1.1.1 [34] is a robust, commercial-grade, full-

featured open-source toolkit for the transport layer security

(TLS) protocol formerly known as the secure sockets layer

(SSL) protocol. A stand-alone cryptographic library is pro-

vided for applications to use. We annotated that the calls to

memcpy and the key in AES-CBC module were sensitive.

For security, we annotated this function as sensitive and

performed a binary analysis based on it. Since AES-CBC

encrypts and decrypts 16 bytes of data as a block, we randomly

generated binary data files of different numbers of blocks as

input for OpenSSL and OpenSSL with SAPPX. By protecting

the process of initializing and using keys, the risk of key

compromise is greatly reduced.

As shown in Fig. 9(a), the Overhead curve decreases

because the enclave creation and destruction time is fixed

(which is related positively to the size of the TCB), and it

becomes smaller as the amount of data processed becomes

larger and the processing time becomes longer. Eventually,

the extra overhead of OpenSSL with SAPPX stays around

10% because of the additional time consumed by the memory

operations that require copying the file contents to the enclave

for processing and returning the results.

Besides, we used the openssl speed command with

a specific number of bytes to measure the speed of AES-

128,192,256-CBC algorithms. The speed utility performs a

series of encryption and decryption operations using different

sizes of randomly generated data. We take the average of the

speed of these algorithms shown in Fig. 9(b). We found that the

poor performance after the partition is due to the fact that the

speed utility calls the AES-CBC (Ecall) frequently to encrypt

a specific number of blocks in a fixed period of time. The

fewer the number of blocks, the more frequently the space

switches, resulting in encryption inefficiency.

B. Performance of Protecting thttpd (Q2 and Q3)

Thttpd 2.29 [35] is an open-source software web server

designed for simplicity, a small execution footprint and speed.

It supports user authentication, i.e., the password file stored

in the server is checked before each GET request. We used

thttpd to build a local server and placed the different sizes

of files in the corresponding html folder to provide download

services. In terms of security, we annotated the server’s local

password file and the files to be downloaded by a client are

security-sensitive. In this way, the authentication check of

thttpd and the downloading of the files by the client will not be

compromised by attackers. We used wget 1.91.4 [36] to record

the request time of downloading different files and calculated

the additional overhead under the SAPPX partition.

The overhead curve in Fig. 9(c) is unlike OpenSSL, because

the creation and destruction time of the enclave is not recorded

when downloading the file. Thttpd is a server program, and

GET request is just plugged into the program’s main loop that
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Fig. 9: Evaluations of SAPPX with real-world applications.

TABLE I
RESULTS FOR SPECCPU 2017 BENCHMARKS.

Benchmark Binary Size Sensitive Data # of functions/in enclave User Program Sizea TCB Sizeb Overhead %
505.mcf r 87.4KB network t net 40/5 78.2KB 162.8KB 9.6
519.lbm r 67.0KB LBM Grid* srcGrid 20/3 85.3KB 174.2KB 18.3
525.x264 r 1.7MB uint16 t cabac size 5ones[] 837/30 927.7KB 318.7KB 29.5

538.imagick r 4.4MB UTFInfo utf info[] 2960/11 3.1MB 276.1KB 23.5
544.nab r 441.8KB ATOM T atab[] 343/7 323.9KB 162.8KB 16.8
557.xz r 577.5KB char bufs[] 543/13 329.8KB 243.7KB 12.7

aInformation like debug section is not infected into the SGX user program, which makes the size may be smaller than the original binaries.
bTCB size is the size of the enclave-shared object file, utilities in EPC like enclave measurement and other security-critical functions are excluded.

does not participate in the server’s initialization. The reason for

the slow rise in the additional overhead of thttpd with SAPPX

is the increase in the proportion of Ocalls. The writing of the

contents of the file being downloaded is implemented using the

library functions write and writev, which are Ocalled back

to user space for execution under the partition of SAPPX. It

should be mentioned that the speed of the network is the most

critical part of the download latency in practice.

C. Experiment Results of SPECCPU 2017 (Q1 and Q3)

SPECCPU 2017 [37] benchmarks are designed to provide a

comparative measure of compute-intensive performance across

the widest practical range of hardware using workloads devel-

oped from real user applications and producing deterministic

results. Using them, we can well demonstrate the correctness

as well as the efficiency of SAPPX. These benchmarks are

computationally intensive applications, not security-sensitive

ones. However, we believe it was important for SAPPX to

use computationally intensive benchmarks because they stress-

tested SAPPX’s detection mechanism.

We randomly selected a global variable for each benchmark,

annotated it as sensitive, and provided it to SAPPX. Table

I presents the experimental results. The type of information

comes from IDA Pro. The enclave-shared object file contains

not only functions and data split from the original program

but also many functions and data that are used to support the

operations in the enclave, such as encryption and switching,

therefore, the size of enclave shared object file may be larger

or smaller than the original program.

We run these benchmarks in rate mode. The runtime

overhead of SAPPX comes from the switching between user

space and enclave, which means the frequency of switching

determines the overhead. With the help of dynamic binary

instrumentation, we avoid the high frequency of switching

between these two spaces. The results presented in Table I

show that the additional runtime overhead of the benchmarks

with SAPPX is 18.4% on average, and the TCB is lightweight.

D. Comparison to Other Work

As shown in table II, Haven puts unmodified binaries into

the enclave, while Graphene-SGX puts binaries generated by

source code in a particular compilation environment into the

enclave. They both need to load a series of trusted shared

libraries into the enclave, which undoubtedly leads to huge

TCB. It is a violation of the principle of least privilege: all

enclave code executes at the level of privilege that allows it

to access sensitive data [38].

The use of static linking causes SCONE and Panoply’s

TCB size to be not as small as they described and low

code reusability. Panoply, still needs to make changes to the

source code to fit their architecture, which greatly reduces the

efficiency of development. Glamdring introduces an automatic

partitioning method to obtain small TCB, but requires the

user to annotate source and sink in source code, requiring the

user to have an overall knowledge of the C program. Instead,

SAPPX only needs the user to mark the sensitive data source,

i.e., the input on which the program relies, it can be a file or

other input as well. So, using our partitioning tool, the user
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TABLE II
COMPARISON OF PROTECTING APPLICATIONS USING INTEL SGX.

Model Source Modify Link TCB Size Level OverheadName Code Source (to original)
Haven � - dynamic huge 31%-54%

SCONE �
�

static 60%–200%
0.6x–1.2x

(library) (throughput)
Panoply � � static 105.8% 24%

Graphene-SGX � � dynamic huge <200%

Glamdring �
�

dynamic optional
25%-200%

(annotations) (optional)

SAPPX � - dynamic
6.3%-260% 9.6%-29.5%
(optional) (optional)

only needs to know the basic features of the program and the

sensitive data it may deal with.

V. DISCUSSION

Nested pointer. As discussed in III-C, by assigning a fixed

value to the memory to which pointed by the pointer and

monitoring memory reads and writes during the dynamic

execution of the function, we can know whether the pointer is

referenced as a nested pointer or not. In addition to this, there

is another usage of nested pointers that can be identified by

static analysis: the memory to which the pointer offset points

is assigned as the value of another pointer.

1 p, q; // Known: p, q are pointers
2 p->offset = q; // p is a nested pointer

Nested pointers bring uncertainties, such as a linked list which

needs the exact memory layout of the structure, and the list

pointer needs to be distinguished from the other pointers.

PtrSplit [39] is a framework for partitioning pointers into

remote-procedure calls (RPCs) for safe executions, which

“solves” the pointer memory copy problem by defining the

layers of deep copies of pointers.

Indirect call. As discussed in III-C, there is another sit-

uation: the value of rax comes from a variable. The value

of the variable is changeable, so we cannot use relocation or

trampoline functions to get to the function it points to. Previous

work has proposed some solutions, but reliability cannot be

guaranteed: Balakrishnan et al. [32] present value-set analysis

(VSA) which determines an over-approximation of the set of

addresses that each data object can hold at each program point,

it can get all the possible value of register rax. DEEPVSA [40]

uses deep neural networks to improve alias analysis for VSA

to get the value more accurately.

Finally, SGX’s interface functions do not support using class

objects passed as parameters. But in our implementation of

SAPPX, all object member functions passed this are treated

as ordinary pointers, and all member data is available via its

offset. But the virtual function table pointer vptr in it brings

a lot of uncertainty, which is the reason why SGX does not

allow passing objects at the interface.

VI. RELATED WORK

Secure application with TEE. Trust Execution Environ-

ment (TEE) is designed to protect sensitive data and code

from malicious attacks. TEEs typically rely on hardware-

based isolation mechanisms, such as Intel SGX or ARM

TrustZone, to create a secure environment that is isolated from

the rest of the system. Park et al. [41] combine a multi-level

security model and hardware enclave to get a nested enclave,

which provides a separate internal module for each user to

handle privacy-sensitive data while sharing the same library.

Ryoan [42] uses SGX to provide hardware enclaves, and each

enclave contains a sandbox instance that loads and executes

untrusted modules for protecting applications from untrusted

3rd party libraries. Rubinov et al. [43] use taint analysis

handles of confidential data in Android applications to run

in the “secure” world and reduce the overhead of transitions

between the secure and normal worlds.

Partition for execution. Partitioning programs for execu-

tion are the most straightforward way to protect sensitive

content. Previous studies of program partition execution have

included differences in what to protect and how to partition,

and even the granularity of the partition. RT-trust [44] checks

the validity of the annotation, analyzes whether the converted

system will continue to satisfy the original real-time con-

straints via custom static analysis, and with feedback loops

suggests how to modify the code. Program-mandering [45]

selects metrics to adjust the boundaries of the constructed PDG

automatically to reach privilege separation and turn function

callings into RPCs. Trapp et al. [46] divide programs into

different processes based on privileges (e.g., socket, file) and

improve inter-process communication. Civet [47] is a partition-

ing framework using Intel SGX, but for Java applications, it

contributes a partitioned Java runtime design. Besides Java,

Ghosn et al. [48] automatically extract the Go language’s

secure code and data to the enclave, and uses low-overhead

channels to switch between the enclave and user space. These

methods allow SGX to expand the choice of target programs

without being limited to C/C++.

VII. CONCLUSION

SAPPX employs a combination of static and dynamic binary

analysis techniques to determine the subset of the application’s

code and/or data that should be secured within an SGX

enclave, reduces the frequency of E/Ocall by boundary ad-

justment, and offers guarantees that the integrity of application

data and code by infection and synchronize. Our experimental

evaluations demonstrate that SAPPX offers sufficient utility

for partitioning unmodified legacy COTS binaries. Moreover,

it introduces a reasonable additional overhead and maintains

a small TCB.
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“SOK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016, pp. 138–157, IEEE Computer Society,
2016.

[23] “Intel® Software Guard Extensions (Intel® SGX) Developer Guide.”
https://www.intel.com/content/www/us/en/content-details/671334/
intel-software-guard-extensions-intel-sgx-developer-guide.html.

[24] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
OS services for SGX enclaves,” in Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017 (G. Alonso, R. Bianchini, and M. Vukolic, eds.), pp. 238–
253, ACM, 2017.

[25] “Pin.” https://www.intel.com/content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html.

[26] H. Lu, M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v ap-
plication binary interface,” AMD64 Architecture Processor Supplement,
pp. 588–601, 2018.

[27] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert,
“τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries,”
in International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), pp. 423–444, 2018.

[28] F. Saudel and J. Salwan, “Triton: A Dynamic Symbolic Execu-
tion Framework,” in Symposium sur la sécurité des technologies de
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