
Revisiting Attacks and Defenses
in Connected and Autonomous Vehicles

Ziyan Fang1,2(B), Weijun Zhang1,2, Zongfei Li3, Huaao Tang3, Hao Han1,2(B),
and Fengyuan Xu3

1 College of Computer Sciences and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

542897592@qq.com, 807301949@qq.com, hhan@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing 210093, China
3 State Key Laboratory for Novel Technology, Nanjing University,

Nanjing 210046, China

Abstract. With the development of the automotive industry, the secu-
rity of connected and autonomous vehicles (CAVs) has become a hot
research field in recent years. However, previous studies mainly focus
on the threats and defending mechanisms from the networking perspec-
tive, while newly emerging attacks are targeting the core component –
AI of CAVs. Therefore, the defense methods against these attacks are
urgently needed. In this paper, we revisit emerging attacks and their
technical countermeasures for CAVs in a layered inventory, including
in-vehicle systems, V2X, and self-driving. We believe that this survey
provides insights on defending adversary attacks on CAVs and will shed
light on the future research in this area.
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1 Introduction

The automotive industry is undergoing massive digital transformation towards
connected and autonomous vehicles (CAVs). Compared with traditional cars,
CAVs have great potential to achieve extended driving automation with
strengthened environment awareness improved by vehicle connectivity. The
Association of Automotive Engineers (SAE) definitions for levels of automa-
tion divide vehicles into 6 levels. However, only cars in L4 and L5 are considered
autonomous vehicles. The L4 has fully automated driving feature in specific
environments, while L5 can do all the driving in all circumstances.

Their self-driving capability is achieved through three layers: perception, cog-
nition and execution as shown in Fig. 1. The perception layer is used to capture
vehicle’s internal and surrounding status via in-vehicle sensors and environmen-
tal sensors. With assistant of V2X communication, the cognition layer recognizes
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vehicle’s motion states and external threats based on the perception layer, and
then determines the trajectory of the vehicle through deep learning algorithms.
Finally, the execution layer controls the vehicle by issuing commands to Elec-
tronic Control Units (ECUs) and actuators through in-vehicle networks (e.g.,
CAN bus, FlexRay, MOST).

Fig. 1. The structure of connected and autonomous vehicles

Modern cars are quite insecure and vulnerable from an information system
perspective. Although some security mechanisms have been adopted by automo-
tive suppliers after a 2014 Jeep Cherokee was hacked by Miller and Valasek [26],
new vulnerabilities continue to rise every year. A large number of studies show
that the attack surface of CAVs is broad. A set of features in in-vehicle systems,
V2X communication, autonomous algorithms might allow misuse of or a breach
into CAVs, resulting in much more profound and widespread effects. Therefore,
it is important of protecting future CAVs from hackers and cyberattacks.

In literature, there are many survey papers about automotive security. For
example, work [3] study vulnerabilities and defenses in Controller Area Net-
work (CAN) bus with more focus on authentication. Work [44] summarize the
V2X technology and its protocol vulnerabilities, as well as corresponding defense
measures. Work [43] discusses the security issues of connected vehicles from
three categories, and introduces the trend of network attacks and the protection
requirements that should be developed for networked services. Work [34] pro-
vides an overview of the security issues in AV but with emphasis on attacking
sensors and iris recognition systems. However, those surveys are not specific to
CAVs and mainly focus on the networking aspect rather than the system and
algorithm perspective.

In this paper, we review potential attacks and their technical countermea-
sures for CAVs in a layered inventory: in-vehicle systems, V2X and autonomous
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algorithms corresponding to execution, cognition and perception layers, respec-
tively. We summarize the attack threats in each layer. Compared with the threats
in traditional vehicles, attackers not only attack ECU and CAN networks, they
also attack environmental sensors and autonomous vehicle algorithms in CAVs.
Later in this survey, we provide insights on corresponding defense approaches
to address those attack threats. In summary, the contributions of this paper
include:

– To our best understanding, this survey is the first to study the attack surface
and defensive mechanisms for CAVs from the perspective of the system and
algorithms, while previous study mostly is network-oriented. This will shed
light on the future research in this area.

– We explore new potential attacks for emerging CAVs along with exist-
ing vulnerabilities in E/E architecture, and categorize the various security
approaches from 3 layers, including in-vehicle systems, V2X and autonomous
driving algorithms.

– We discuss the possible directions for future research works on security and
privacy issues in CAVs.

The rest of this paper is structured as follows: Sect. 2 specifically introduces
the architecture of connected and autonomous vehicles. Section 3 describes the
attacks that may be realized at each layer of the CAVs. Section 4 introduces the
corresponding defense methods in detail for possible attacks. Section 5 describes
the possible directions for future research works on security and privacy issues in
CAVs, followed by the summary of the paper. Section 6 summarizes this survey.

2 Background

CAVs include not only autonomous driving but also the connection between the
vehicle and the surrounding environment. In this section, we briefly present the
main components of CAVs, which are typical targets of modern vehicle attacks
discussed in next section.

2.1 In-Vehicle Networks

The in-vehicle network of CAVs connects sensors, Electronic Control Units
(ECUs) and actuators of the car with a point-to-point connection into a complex
network structure. They together are the guarantee for the normal and security
vehicle driving, and are the critical components of the vehicle. The failure of any
one may cause the abnormal driving of the vehicle, and even a traffic accident
in a serious situation.

Sensors in CAVs can be divided into two categories: internal sensors and
external sensors. The former, arranged inside a car, is used to check the function
of the vehicle. For example, the oxygen sensor monitors the content of exhaust
gases for the proportion of oxygen. Sensors in the latter category provide the car
visuals of its surroundings and help it detect the speed and distance of nearby
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objects, as well as their three-dimensional shape. Three primary external vehicle
sensors are camera, radar and LiDAR.

Electronic Control Units (ECUs) are used to enable computer-based
control of a vehicle. Based on the information sent by vehicle sensors, ECUs
determine the running states and control the vehicle to work together. A modern
car may have up to 70 ECUs - and each of them is assigned a specific function
(e.g., engine control). Typically, ECUs are grouped into several subnetworks
according to their functions. For example, the ECUs in charge of steering and
braking are grouped together.

Bus networks, like the nervous system of the human body, interconnect
ECUs and enable the information sensed by one part to be shared with other
parts of the vehicle. The autopilot system in CAVs use such networks to trans-
mit control commands. Example bus networks include Controller Area Network
(CAN), CAN-FD, FlexRay, and automotive Ethernet. Among them, CAN is the
standard for in-vehicle communications today in fact. The detail of CAN can be
found in many good surveys such as [19].

2.2 Vehicle-to-X Communication (V2X)

V2X which stands for vehicle-to-everything technology enables cars to commu-
nicate with their surroundings and makes driving safer and more efficient. V2X
covers Vehicle to vehicle (V2V), Vehicle to infrastructure (V2I), Vehicle to Net-
work(V2N), Vehicle to Pedestrian (V2P) and others. Working together, they
provide a guarantee for the security driving of vehicles. In CAVs, V2X offers
an additional means to sense environment conditions other than typical sensors,
e.g., retrieving traffic information and other vehicle’s location for route planning.

Currently, there are two main types of communication technologies used for
V2X: Dedicated Short Range Communication (DSRC) and Long Term Evolu-
tion for V2X (LTE-V2X). The DSRC system consists of a series of IEEE and
SAE standards. DSRC uses IEEE 802.11p protocol which is also called Wireless
Access in the Vehicular Environment (WAVE), at the physical layer and media
access control (MAC) layer, while its network architecture and security protocols
are defined in IEEE 1609 WAVE.

2.3 Autonomous Algorithms

Autonomous driving requires the car to be like human to recognize something
that appears in surrounding environment and to forecast the changes that are
possible to these surroundings. A deep neural network with various autonomous
algorithms is equivalent to a human brain. Based on their tasks, those algorithms
can be broadly grouped into three categories as follows:

– The detection of an object: Object detection based on deep learning is
often used in the detection of traffic signs/lights and other vehicles in the
proximity. Based on the data provided by environmental sensors attached to
the vehicle, object detection algorithms can pinpoint the location of traffic
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signs/lights and other vehicles. Together with other autonomous algorithms,
the autopilot system will make a decision whether the car needs to slow
down or stop. The state-of-the-art learning-based object detection algorithms
include Faster R-CNN, etc.

– The recognition of an object: Object detection is typically coupled with
the task of object recognition which is used to identify the class of objects, e.g.,
whether an object is a traffic sign, vehicle, or pedestrian. Common recognition
algorithms are alexnet and senet.

– The tracking of an object and trajectory planning: Trajectory plan-
ning is based on path planning and obstacle avoidance planning. At present,
it is mainly based on reinforcement learning and time series algorithms to
achieve high standards of unmanned driving technology. In particular, rein-
forcement learning is widely used in automatic driving trajectory decision-
making.

3 Attack Surface for CAVs

In this section, we revisit the attack surfaces of CAVs and identify three key com-
ponents: in-vehicle systems, V2X communication, and autonomous algorithms.
We separate them primarily into two categories: remote and internal as shown
in Fig. 2.

Fig. 2. Example of potential attacks by various research groups

3.1 Attacks Against In-Vehicle Systems

In-vehicle systems consist of three major components: sensors, ECUs and bus
networks. Each of them may be compromised with both remote and internal
attacks. Remote includes primarily any form of wireless communications inter-
face. Internal includes both physical access such as the USB or OBD-II port,
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and internal elements of the in-vehicle system interconnected on the network or
the network itself.

Network: The CAN network is an important attack surface. Due to the broad-
cast nature of CAN as well as a lack of encryption, an attacker with access
to internal network can monitor and reverse engineer the network architecture,
collect personally sensitive information, or perform DoS attacks. Access to the
network can be obtained through a physical interface or through a variety of
wireless attack vectors.

The attacks on wireless interfaces are almost remote attacks. Work [14] ana-
lyzed relay attacks on Passive Keyless Entry and Start (PKES) systems used
in modern cars. Work [15] proposed that by recovering the cryptographic algo-
rithms and keys from ECUs, an adversary can gain unauthorized access to a
vehicle. There are many internal attacks on CAN. For example, the attackers
can eavesdrop CAN data by installing interceptors on the CAN network [6]. The
eavesdropping attack is the starting point for many attacks, such as spoofing
attacks, Dos attacks [6,31] and replay attacks. Work [9] discussed two kinds of
spoofing attacks, which are masquerade attack and fabrication attack.

ECU: Compromising an ECU can also provide access to other shared secrets
(such as cryptographic keys) which allow an attack to extend to other compo-
nents on the vehicle.

One of the remote attacks is proposed by work [8] named battery drain
attack due to the ECU wake-up mechanism. On the other hand, an attacker can
physically internal attack the ECU through voltages, currents, and other physical
means, such as overcurrent attacks [37]. This attack makes the microprocessor
fail or burn out by exceeding the maximum rating of the microprocessor.

Sensor [33,37]: Sensors can be manipulated directly to achieve a particular
effect. By modifying the physical property detected by a sensor, tampering with
the sensor hardware, or through electromagnetic attacks, the input for which an
ECU will make a decision can be modified directly.

Attacks on sensors are mostly remote attacks, such as jamming attacks [47]
and spoofing attacks [47]. Noise can change sensor data to provide malicious
input to components using the data. The tire pressure sensor in the TPMS (Tire
Pressure Monitoring System) can be used for observation and tracking purposes
and as an activation trigger for other attacks [35].

3.2 Attacks Against V2X Communication

Vehicles across different manufacturers share DSRC as a common attack surface
since they communicate with each other on the same V2X system. Separate
from the remote code execution risk, false data provided through a V2X system
can cause disruptions in traffic flow and pose a risk to personal safety through
physical effects. In addition, any vulnerability may have the potential to spread
to other vehicles or infrastructure quickly.

Most of the attacks on V2X are remote attacks which are carried out through
the V2X communication protocols such as IEEE 802.11p. These attacks
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include [28]:1) Black hole attack : The compromised node will not relay the data
packet to adjacent nodes, and the data packet will be intercepted and discarded
by the attacker [2]. 2) Flooding attack : By flooding the MAC, the attacker will
send countless data packets to make the victim node unusable. 3) Jamming
attack : By using a jammer to identify the data packet and launch attack, the
attacker can broadcast signals to destroy the data or block the channel, etc. [21].
4) Sybil attack : The attacking station will send false V2X messages, which will
simulate fake sites on the road and prevent other sites from sending real mes-
sages.

Vehicle ransomware [46] is also a remote attack but it is based on terminal
nodes, such as mobile phones and the vehicle-mounted security vulnerabilities.
Attackers can indirectly infect botnets to vehicles through smartphones, navi-
gation, etc. and through vulnerabilities such as the Bluetooth buffer overflow
vulnerability of in-vehicle infotainment units to lock the key parts of the vehicle.

Eavesdropping attacks [2] can be internal attacks or remote attacks. In the
internal attack, attackers can collect information anywhere without permission,
such as the data management system. In the remote attack, attackers can eaves-
drop on vehicle information due to the plaintext transmission.

3.3 Adversarial Attacks Against Autonomous Algorithms

If autonomous algorithms are attacked, the autopilot system may make an
adverse decision, resulting in devastating consequences. Similar to Sect. 2.3, we
divide algorithm-related attacks into three tasks.

Attacks on Object Detection Algorithms [7,23,39,48]: They are mostly
based on three techniques: feature extraction region, iterative optimization, and
Generative Adversarial Network (GAN). Since target detection algorithms need
to extract the region of interest, attackers corrupt the extracted region by inter-
ference. DPATH attack [25] is to make the region where the adversarial patches
exists as the only valid region of interest, while potential proposal region are
ignored. BPATH attack [22] generates and refines the adversarial background
patches in the overall loss optimization iterations.

Attacks on Object Recognition Algorithms [4,27,41,45]: Three categories
as shown below. Because there are few cases of classification algorithm, however
they are the most classical in the field of deep learning vision, simply mention
it as a category.

– Fast Gradient Sign based Adversarial attacks: Iterative Targeted Fast Gradi-
ent Sign Method which is based on FGSM algorithm applies the target FGSM
multiple times for a more powerful example of confrontation.

– Optimization based Approach: In this way, the adversary samples are obtained
by solving optimization problems. By replacing the class variables in the
antidisturbance with target class with the lowest recognition probability, the
least likely class iterative methods are obtained.
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– Universal Adversarial Perturbation: Universal advanced perturbations com-
puted by Moosavi-Dezfooli et al. [29]. can generate any image attack distur-
bance, which is also almost invisible to human beings.

Attacks on the Trajectory Algorithms [42,48]: Trajectory algorithms are
mainly attacked by strategical time attack and enhancing attack [24]. Strategi-
cally time attack is a traditional and conventional learning method. Enhancing
attack’s goal is to induce the agent to go to a specified state makes the perfor-
mance of agent worse.

4 Survey of Technical Defense

This section will provide an overview of existing defensive approaches in response
to the attack model presented in Sect. 3.

4.1 Defensive Approaches for In-Vehicle Systems

Authentication-Based Countermeasures: The lack of authenticity within
automotive networks is a prime cause of the failure of today’s automotive secu-
rity. We admit that cryptography and key management is a requirement for any
system that attempts to implement authentication. However, implementation of
any form of cryptography on the car’s resource constrained ECUs performing
real-time control may not be practicable. Therefore, securing the external gate-
ways and communications paths to the CAN bus may prove more valuable and
workable than securing the individual nodes through cryptography.

One method of adding authentication between CAN nodes is through the
use of Message Authentication Codes (MACs). For example, work [18] proposed
the IA-CAN (Identity-Anonymized CAN) protocol. This scheme randomizes the
CAN ID on a frame-by-frame basis to provide sender authentication and prevent
attackers from injecting fake messages. In work [12], Parrot system was proposed
to defend against the spoofing attack. The ECU equipped with Parrot System
can identify spoofing messages on the bus that impersonate one of its own IDs.

In addition, there are other authentication-based defense methods. Work [30]
have summarized some defenses and evaluated them through custom security
testing standards. Therefore, in these paper we will not repeat them.

Fingerprint-Based Countermeasures: Fingerprint-based access control pre-
vents attackers from accessing certain resources by verifying them as unautho-
rized nodes. Certain physical characteristics/uniqueness such as the voltage, the
signal rising and falling edge characteristics and the clock frequency are utilized
to recognize legitimate ECUs, so this type of approaches can prevent spoofing
attacks. For example, work [10] firstly proposed the voltage profile of the ECU
as its specific fingerprint to identify the attacker ECU by measuring and using
the voltage on the vehicle network and implemented the corresponding detection
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tool called Viden. Work [20] improved Viden by only measuring the dominant
voltage of the ECU as a signaling feature, and using high and low signals rather
than differential signals which would make it more error-prone in identifying
attacker ECUs.

To prevent bus-off attacks (i.e., a type of denial-of-service attacks), work [11]
proposed VoltageIDS, an intrusion detection system based on voltage character-
istics. VoltageIDS uses electrical characteristics which is the time when the status
of the signal changes from 0 to 1 and 1 to 0 as the fingerprint characteristics of
the CAN message.

Furthermore, the defensive approaches for in-vehicle systems are not limited
to ECU-based “fingerprints”. Work [36] developed a motion-based IDS (MIDS).
This method determines whether the data is normal or has been tampered based
on the fingerprint characteristics of the vehicle’s behavior correlation at a certain
time, such as wheel speed, vehicle speed, etc.

IDS-Based Countermeasures: The intrusion detection method in the auto-
motive domain depends on how the detection mechanism is utilized within the
system. The anomaly-based IDS is the most common and promising approach
used in the automotive IDS compared to the signature- and statistical-based
technique. As mentioned above, Work [9] proposed the clock-based intrusion
detection system (CIDS). It exploited the timing interval of CAN traffic and the
frequency of CAN packet sequences in identifying anomalies within the CAN
bus network.

The signature-based approach detects an attack by utilizing a set of identified
signatures, malicious events, or rules stored in the database module of IDS.
For example work [40] extracted the attack signatures obtained from standard
ECU specifications using finite-state automate (FSA) in detecting an anomalous
sequence of CAN packets via the in-vehicle network.

Other Defensive Approaches: There are other defense methods and are not
based on the three categories above. Work [35] provided some defense guidance
against TPMS attacks which is encrypting TPS packets and placement of addi-
tional password checksums, such as message authentication codes, before CRC
checksums. Besides, Mehmet Bozdal, et al. [6] have been made a survey on the
other defensive approaches and we will not repeat in this paper.

4.2 V2X Security Defense

V2X attacks are mostly remote attacks, so this section will focus on security
defense methods against them.

Remote attacks are usually completed through protocol vulnerabilities. Many
researchers have found methods to against them. The model proposed in work
[1] uses advanced encryption standards to achieve user privacy. Using the ran-
domness of channels in a vehicle network to share keys solves the key distribu-
tion problem of advanced encryption standards. Work [5] proposed a secure and
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intelligent routing protocol where they use double encryption on packets and use
the authentication scheme to measure the trust of nodes. However, this method
increases processing time and adds network overhead. Work [49] proposed a new
method to create passwords based on one-time authentication asymmetric group
key protocols Mixed zones to protect against malicious eavesdropping. Security
information is encrypted using group keys to improve vehicle privacy.

In particular, for the Sybil attack, work [16] used directional antennas to
identify the source of the message. If a malicious vehicle broadcasts a large
number of messages, it will be discovered by other vehicles.

4.3 Defensive Measures for Autonomous Algorithms

Countermeasures for Object Detection and Recognition: To improve the
performance of the machine learning models against adversarial attacks, existing
solutions developed in other domains may not be directly used for autonomous
driving. For example, the detection of adversarial attacks may not be useful.
However, there exist suitable solutions to help the CAVs defend against adver-
sarial attacks in literature.

These approaches include but not limited to: 1) data augmentation, using
image processing methods to help augment the quantity and diversity of the
training set; 2) input transformation, using image processing methods to disturb
or even remove the adversarial perturbations; 3) adversarial training [17]; and
4) defensive distillation [32];

Input transformation through image processing methods(e.g. JPEG compres-
sion) is considered to be the potential defensive measure. Work [50] discussed
that input transformation may not be useful if the adversarial samples are gen-
erated with various transformations and random noise.

Adversarial training was discussed in work [38,50]. The idea of adversar-
ial is producing adversarial samples during the training process and injecting
them to the training set. Work [50] discussed that adversarial training can be
bypassed through transferability or generating new adversarial samples against
the improved models. Besides adversarial training, defensive distillation was also
evaluated in work [13].

Countermeasures for Object Tracking and Trajectory Algorithms: To
defend attacks on object tracking and trajectory, since object tracking and tra-
jectory is now mainly based on reinforcement learning and time series algorithm,
common defensive measures against adversarial attacks might be useful, such as
adversarial training, defensive distillation, and data augmentation.

Objective function plays a pivotal role in reinforcement learning algorithm,
and changing the objective function might also help to defend attacks on the
object tracking and trajectory such as adding stability term and adding regular-
ization term. By measuring the difference of the output produced from different
input of versions of perturbations, the purpose of adding stability term is to help
DNN generate similar output against natural perturbations. The idea of adding
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regularization term to defend is adding the norm of adversarial perturbations to
the objective function, thus attenuating the effect of adversarial perturbations.

5 Discussion

The security issues of CAVs are still considered to be open research areas, and
many issues need to be resolved. This section will discuss some of these issues.
As CAVs are becoming more popular, people are now getting concerned if it is
necessary to regulate their use. For example, in 2018 in Arizona (USA) the first
case of an autonomous car killing a pedestrian has been registered. In this case,
who should be considered to be at fault? The problem is related to whether
the driver in the car controls the vehicle at the moment of the accident. Is
the car manufacturer at fault, or should the attackers who hacked self-driving
take the responsibility. Identifying or fingerprinting drivers is one of proposed
approaches to answer these questions. There have been many studies on combin-
ing vehicle network data with machine learning in recent years, collecting vehicle
data to learn the driver’s behavioral characteristics, as each driver’s unique “fin-
gerprint”, and successfully identifying the driver during driving. However, there
is no solution to determine whether is automatic driving or human driving. We
believe that each driver’s style of driving the vehicle, is different, including the
AI driver. In this way, by collecting enough in-vehicle data, it is possible to
determine whether the car was driven autonomously or artificially when a car
accident occurs. Yet it needs further investigation.

In addition, certain vehicle attacks currently do not have effective solutions,
such as the battery exhaustion attack against the ECU wake-up mechanism,
the interference attacks faced by environmental sensors, and fast gradient sign
based adversarial attacks on sensors that process images, etc. Some of them are
mentioned above. These attacks have received a lot of in-depth research, but few
countermeasures are available. Therefore, the CAVs security is still long way to
go.

6 Conclusion

In this survey, we systematically discuss attacks and defense methods for con-
nected and autonomous vehicles, as well as security of CAVs algorithms. In
order to better present the most current research in this area, we divide CAVs
into three layers: in-vehicle network, V2X, and autonomous vehicle algorithms.
Besides, we divide the attacks on each layer into two categories: remote attacks
and internal attacks, and list examples of each type of attack in the form of a
table. Then we synthesize and summarize existing defenses to determine their
effectiveness against these identified attacks. Finally, we provide further dis-
cussion on the security of CAVs. This survey provides a good foundation for
researchers interested in the connected and autonomous vehicles and provide a
systematic overview of the security issues for them.
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