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Abstract—With an increasing number of mobile devices
equipped with screens and cameras, screen-camera communication
(SCC) systems enable data exchange between devices conveniently
and efficiently. By encoding data with spatial and temporal diver-
sity on a screen, multiple users with a camera can receive data
without setting up a wireless network. However, as the transmitter
pushes the limits of increasing throughput with a high display
rate, the receiver actually suffers from a low goodput caused by
composite frames. Those frames cannot be decoded correctly with
existing methods. To address this problem, we propose a reliable
data recovery scheme named RescQR. In RescQR, a mixture sepa-
ration scheme coupled with a dedicated frame border is proposed to
separate composite frames. A Viterbi-based data recovery scheme
is proposed to recover data from blurred regions in composite
frames. Additionally, an auto-configuration method with the help
of a front camera is proposed to adjust parameters automatically
according to the estimated distance between the screen and the
camera. Our prototype and experiments demonstrate that RescQR
achieves a data goodput of 400+kbps even with standard QR codes,
which significantly outperforms previous solutions.

Index Terms—Data recovery, dynamic QR code, screen-camera
communication, viterbi algorithm.

I. INTRODUCTION

S CREEN-CAMERA communication (SCC) is a prominent
technology used to transfer data over screen-camera links.

Different from traditional visible light communication (VLC)
and Optical-Camera communication (OCC) [3], [14], [15], [19],
[23], [26], [34], [35], [36], [39], which typically rely on the
modulation of the intensity/frequency of light signals (e.g., from
LED lamps), SCC can fully utilize the spatial and temporal
diversity (i.e., modulating multiple pixels on the screen) to
deliver high-rate data communication. Also, SCC does not need

Manuscript received 22 August 2022; revised 13 March 2023; accepted 9 May
2023. Date of publication 17 May 2023; date of current version 4 April 2024.
This work was supported in part by the National Key R&D Program of China
under Grant #2021YFB3100300, in part by the NSFC under Grants #61972200,
#61972199, #62172215, and #62272224, in part by the Natural Science Foun-
dation of Jiangsu Province under Grant #BK20200067, and in part by the A3
Foresight Program of NSFC under Grant #62061146002. Recommended for
acceptance by G. Xylomenos. (Corresponding author: Hao Han.)

Hao Han, Kunming Xie, Tongyu Wang, Xiaojun Zhu, and Yanchao Zhao
are with the College of Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
(e-mail: hhan@nuaa.edu.cn; kunmingxie@163.com; tonywang@nuaa.edu.cn;
gxjzhu@gmail.com; yczhao@nuaa.edu.cn).

Fengyuan Xu is with the National Key Lab for Novel Software
Technology, Nanjing University, Nanjing, Jiangsu 210023, China (e-mail:
fengyuan.xu@nju.edu.cn).

Digital Object Identifier 10.1109/TMC.2023.3277212

Fig. 1. Example use cases of high-throughput SCC systems.

any modification to the off-the-shelf screen and camera devices
so it can be easily integrated with smartphones. Thus, SCC grows
as an increasingly hot topic.

Compared to radio frequency (RF) communications, SCC
has several unique benefits. First, SCC establishes a fast
connection without the explicit setup of a network, which Wi-Fi
and Bluetooth typically suffer from. Second, the limited RF
spectrum is extremely crowded, while SCC has a large amount
of available spectrum, independent regulation, and support of
one-to-many communication naturally. Last but not least, SCC
has inherent security. Unlike RF signal which passes through
walls, SCC is confined into a well-defined coverage zone.
Thus, SCC enables many new applications in areas such as
mobile communication, digital advertising, smart homes, and
intelligent transportation systems.

Fig. 1 shows three typical use cases of high-throughput SCC.
In Fig. 1(a), smartphone users could share files such as music
and video clips quickly without consuming mobile data when
they meet. Unlike Apple’s AirDrop, SCC supports data transfer
among multiple heterogeneous devices, including ones without
Wi-Fi or Bluetooth. Fig. 1(b) shows that airline passengers could
download inflight entertainment apps from seatback screens
when they get aboard. In Fig. 1(c), the presenter in a conference
could share their slides and supporting materials with the live
audience during the presentation. Note that Quick Response
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(QR) Code has limited data capacity, so it does not work well in
the above use cases.

For decades, a couple of high-throughput SCC systems have
been proposed but mainly focused on designing new coding
schemes, such as PixNet [21], COBRA [10], RDCode [29],
RainBar [31], and ERSCC [41]. Also, some efforts are made to
improve the reliability of SCC in practice, such as ShiftCode [37]
and MegaLight [38]. Most recently, imperceptible SCC commu-
nication [22], [27], [40] attracts researchers’ attention. Yet little
work has studied data recovery without proposing new coding
schemes so far.

The maximum throughput supported by a screen-camera link
is dependent on the display frame rate. As modern displays can
support 120 Hz, 144 Hz, or even higher refresh rates, it gives an
opportunity to improve the data rate of an SCC system. However,
the increase of camera frame rate on smartphones is slow (e.g.,
many smartphones can only capture at 30fps or 60fps). When
the sender’s display frame rate is set higher than the receiver’s
capture frame rate, the frame composition problem occurs that
one frame captured by the camera may in fact come from two
or more successive video frames played on the screen. This
problem is also mentioned in the literature [37], [38], [41]. To
alleviate this problem, most approaches require that the capture
rate must be higher than the display frame rate but at the cost
of sacrificing the maximum throughput. By contrast, we believe
that the ability to recover data from composite frames is the key
to further improving the data rate of SCC systems.

Currently, several options exist to correct data, e.g., by adding
redundancy such as RaptorQ [13] or Reed-Solomon code [33].
Unfortunately, existing error correction mechanisms designed to
handle transmission errors cannot address the composite frame
problem alone. Suppose a captured image is mixed with frames
A and B, and we also have captured another image mixed with
frames B and C. If we could recover all parts of frame B from
two captured frames, we do not need to waste time retransmitting
frame B. The idea seems simple but there are several obstacles
as follows:

1) Unknown mixture patterns: The mixture pattern in com-
posite frames is non-deterministic in practice. The rela-
tionship between the display rate and camera rate affects
such a pattern (see Section II-B). The relative angle be-
tween the screen and the camera also matters (see Section
II-C). Furthermore, the screen-camera link may be occa-
sionally interrupted by hand movement or other effects. It
is likely that the content of consecutive frames is totally
irrelevant.

2) No feedback channels: The screen-camera link is one-
way thus lacking the feedback from the camera to re-
port transmission failure. Some studies [22], [29], [41]
establish out-of-band (OOB) feedback channels by means
of flashlight or audio, but they only work in one-to-one
communication. As different receivers may start the trans-
mission and encounter error frames differently, providing
high-rate SCC without relying on feedback channels is not
straightforward.

3) Dynamic link conditions: The quality of screen-camera
links varies dynamically in practice, which is affected by
ambient luminance, display type, distance, and many more
factors. Thus, some pixels in captured frames may be lost,
corrupted, or distorted. It is challenging to achieve reliable
communication in a self-adaptive way to the environment.

To address the above issues, we propose a novel data recovery
scheme dubbed RescQR to further improve existing SCC sys-
tems at high frame rates. In RescQR, a sequence of 2D barcodes
is repeatedly played on the screen in a carousel mode, a receiver
can join at any time to decode data from captured frames until
all data are received successfully. When capturing composite
frames, the receiver uses a mixture separation scheme coupled
with a specially-designed frame border to separate composite
frames. RescQR also includes a Viterbi-based inference method
that can recover data from blurred areas in composite frames.
In addition, RescQR has an auto-configuration mode to adjust
parameters automatically according to the estimated distance
between the screen and cameras with the help of a front cam-
era. RescQR can deliver raw throughput of 804kbps and data
goodput of 402kpbs when using traditional QR code [6].

It is worth noting that our approach is compatible with any
barcode layout. We choose QR code for ease of implementation,
although it is not designed for bulky data communication. That
is exactly what the word “QR” in the name of our system stands
for. With little adaption, RescQR can rescue other barcodes such
as some high-capacity codes [10], [29], [31]. If so, RescQR is
expected to achieve a higher data rate than we reported in this
paper.

To the best of our knowledge, this is the first work focused on
improving the data recovery for SCC systems at a high frame
rate without designing new coding schemes. The contributions
of this work are summarized as follows:
� We present a novel mixture separation algorithm coupled

with a newly-designed frame border that addresses the
frame composition problem caused by the effect of rolling
shutter and unsynchronized screen fresh rate and camera
capture rate.

� We present a Viterbi-based inference algorithm to decode
data from blurred areas of composite frames with maxi-
mized posterior probability.

� We propose an auto-configuration method with the help of
a front camera to automatically adjust barcode parameters
according to the estimated distance between the screen and
the camera.

� We present an extensive empirical study of RescQR un-
der various environmental factors and conditions such as
distances, relative angles, ambient light intensity, screen
brightness, and different coding parameters. The evaluation
results show that RescQR achieves higher goodput than
state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
discusses the basics of QR code and the underlying causes for
composite frames. Section III presents the design of RescQR in
detail. Section IV reports the implementation of the system and
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Fig. 2. Function patterns and encoding process for QR code.

the results of extensive experiments. Section V reviews related
work, followed by Section VI to conclude the paper.

II. BACKGROUND

A. Understanding QR Code

Again, the proposed approach does not rely on any specific
coding scheme to carry information, but we use QR code in
RescQR. Thus, it is necessary to introduce QR code basics before
presenting the detail of our system.

The QR code is a 2D matrix code that conveys information by
arranging its dark and light squares called “modules” in a grid.
Each dark or light module of a QR code symbol represents a 0
or 1, respectively. QR codes can be generated in 40 different
versions, from Version 1 (21 × 21 modules) to Version 40
(177 × 177 modules). Every QR code has error correction by
distributing Reed-Solomon modules. The standard defines four
levels that provide approximately 7% to 30% error correction.
Besides data and error correction modules, a QR code also
contains special modules grouped into various function patterns
as shown in Fig. 2, such as finder patterns, alignment patterns,
and timing patterns to improve reading performance. Thanks
to this design, RescQR does not need to handle many practical
issues such as symbol alignment and distortion compensation.

QR code defines several encoding modes, such as numeric
and alphanumeric. In RescQR, we directly break up the raw
bits of a transmitted file into 8-bit symbols interleaved by error
correction codewords, meanwhile adding pads and a terminator
if necessary. The transmitted bits are placed starting at the
bottom-right of the QR matrix and proceeding upward or down-
ward symbol-by-symbol as shown in Fig. 2. When a function
pattern is encountered, occupied modules are skipped until the
next unused module is reached. During the placement, data
masking is applied to change some modules from dark to light
or vice versa according to a particular rule. This step aims to
reduce the number of hard-to-read patterns. Finally, if color QR
codes are used, each RGB channel is composed of independent
black-white QR codes.

Fig. 3. Effect of refresh rate, rolling shutters, and phone orientations.

B. Effect of Rolling Shutter and Screen Refresh

Mainstream digital displays such as LCD refresh the image
line-by-line, measured by screen refresh rate. At a time point, the
captured image by a camera may stay in the transition that some
pixels of the image have already changed to new content while
the others have not started changing yet. In addition, image sen-
sors in today’s smartphones mostly use CMOS technology [32],
which read pixels by rolling shutter [17] that each video frame
is captured by scanning across the scene line-by-line instead of
by taking a snapshot of the entire scene. As a result, the pixels
in a captured image may be actually captured at different time
instants.

Due to the combined effect of the rolling shutter and screen
refresh, it is common to capture a composite frame in practice.
If the refresh rate is higher than the rolling shutter’s scanning
rate, the composite frame may contain more than two images.
As shown in Fig. 3, the sender repeatedly plays a video of three
frames at 60fps, while receiver A captures the scene at 30fps. We
observed that the captured frame might contain regions where
pixels were in the middle of the transitions from Frame 3 to
Frame 1 and from Frame 1 to Frame 2, as well as regions
where pixels have already changed to Frame 1 and Frame 2,
respectively. The composite frames, especially those mixed with
more than two frames, significantly increase the difficulty of
decoding.

C. Effect of Phone Orientation

The relative orientation of the screen and camera also affects
composite frames. In Fig. 3, Receiver A held the phone verti-
cally, and Receiver B held the phone horizontally. It shows that
the frame captured by Receiver A has inclined mixture bands,
while the mixture bands captured by Receiver B are horizontal.
The reason is that a screen typically refreshes vertically; By
contrast, the rolling shuttle of the smartphone’s camera scans
horizontally. The actual mixture pattern depends on the relative
angle between the screen’s and camera’s orientations. Thus,
some works such as LightSync [12] fail since rows in the same
line no longer share the same mixture pattern.
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Fig. 4. Workflow of the proposed RescQR system composed of a sender and
multiple receivers.

D. Effect of Response Time

Screen response time is the time to shift from one color to
another. If a pixel is shifting from black to white or vice versa
on a screen, the corresponding pixel in a captured frame may
show an intermediate value. As a result, a composite frame
may contain some blurred bands, and their size depends on the
response time. In our experiments, we compared two captured
frames with standard LCD and OLED (Organic Light-Emitting
Diode) screens. It is found that the composite frame captured on
LCD has much larger blurred bands because OLEDs typically
have the advantage of a faster response time than standard LCD
screens.

III. SYSTEM DESIGN

A. RescQR Overview

Fig. 4 shows the overall workflow of the proposed RescQR
system. Given a file to be transferred, the sender first determines
the configuration of QR codes, such as color space, QR version,
and error correction level. Next, the raw bits of the file are divided
into fragments. Each segment is converted into a static QR code
and then surrounded by a specially designed frame border. To
transfer, a video consisting of a sequence of generated QR codes
is played on the screen repeatedly in a carousel mode.

The receiver can start the camera at any moment and continues
capturing video frames until the file is received successfully.

Fig. 5. Frame layout of RescQR.

Fig. 6. Illustration of the algorithm to separate a mixed frame into different
regions.

To analyze each captured frame, the receiver first extracts the
frame border, decodes the embedded information, and detects
composite frames. If a captured frame is mixed, which means it
comes from two or more successive video frames played on the
screen, RescQR attempts to separate every composite. For the
blurred parts (see Fig. 6) that usually occur in a composite frame,
RescQR adopts a Viterbi-based algorithm [9], [11] to infer
correct colors before and after the transition. Finally, partially
decoded frames are filled into a data cube by the inter-frame
assembly algorithm like solving a Jigsaw puzzle.

B. Separation of Composite Frames

In RescQR, separating composite frames is based on the new
design of a frame border. Although the idea of adding a frame
border is not new, the encoded data is different from previous
approaches in that frame ID and color reference are embedded
in the frame border. The layout of each frame displayed on the
screen is shown in Fig. 5, where the internal area surrounded by
the border is a traditional QR code plus whitespace. The frame
border consists of a group of squares of the same size as the inner
QR modules. Every square has an index. We define that the first
square is located in the top-right corner of the frame border, and
the index increases in counterclockwise order. For any frame i,
we have

Bi = (Bi[1], Bi[2], Bi[3], . . ., Bi[4n]),

where 4n is the total number of squares in the border. Among
them, even squares are used as color references for separating
composite frames, and odd squares are used to encode frame
ID i with white and black. Thus, the j-th square in Bi can be
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expressed as follows:

Bi[j] ∈
{

(Red|Green|Blue) if j is even
(White|Black) otherwise,

(1)

where Bi[j] = Bi[k] for any even j and k, i.e., a frame has the
same reference color.

Next, we present the frame ID correction based on odd squares
and the separation of composite frames based on even squares,
respectively.

Frame ID Correction Method: In RescQR, the total number
of odd squares of Bi is equal to 2n. Each square carries 1-bit
information that black is 1 and white is 0. Among 2n bits, k bits
are used for ID by means of Gray Coding, and the remaining
2n− k bits are Reed-Solomon (RS) parities [33]. The use of
Gray code ensures that two adjacent IDs differ by only one bit.
The Gray code and RS code are used together to correct frame
ID if some pixels in the border are misinterpreted in practice
because we found that the RS code alone was insufficient. It is
also worth noting that if QR version 15 is used in the QR area,
we have 77 × 77 modules plus whitespaces surrounded by the
frame border. As a result, one side of the frame border contains
80 squares, and the total number of odd squares in the border is
equal to 160. Suppose 40 parity bits, we have 120 bits to encode
the frame ID, which is large enough to transfer music files and
video clips between mobile devices.

On the receiver side, the odd squares of the border are first
decoded to derive the frame ID. If some squares are mistakenly
recognized, RS bits are the first resort to correct these errors.
If failed, we rely on Algorithm 1 seeking to recover them. As
shown in the algorithm, the derived ID is first tentatively adjusted
by a small deviation (e.g., adding or subtracting 1 or 2) and
then applied with RS correction again. If still failed, we use
the ID of the preceding and succeeding frames to recover the
current ID. For example, the decoded IDs of captured frames
are {0, 1, 2, 3, 3, 4, 20, 6, 8}, we locate the inaccurate ID (i.e.,
20 in this example) by finding the longest sub-sequence, and try
candidates 4, 5 or 6 to correct 20.

In addition, the color reference is also used to correct IDs.
Equation (1) tells that the color is associated with the frame num-
ber. If the first frame has a red border, all frames with imod 3 = 0
should have a red border, all frames with imod 3 = 1 should
have a green border, and a blue border indicates imod 3 = 2.
If all attempts failed, such a frame is discarded. Note that the
receiver may join the communication at any time, so the ID of the
first captured frame may not start with 0. Our algorithm handles
this situation correctly.

Mixture Separation Method: All even squares in a frame
border displayed on the screen are colored in RGB space,
and they change in a specified sequence (i.e., R, G, B, R,...)
frame-by-frame. With this design, we can easily track how
frames are mixed. The left panel of Fig. 6 illustrates a composite
frame that mixes frame i with a red border and frame i+ 1
with a green border. As shown in the figure, this frame can be
divided into three regions, including 1) the unblurred region in
the bottom-right corner belonging to frame i (i.e., the transition
has not started), 2) the unblurred region in the top-left corner
belonging to frame i+ 1, and 3) the blurred region in the middle

Algorithm 1: Frame ID Correction Algorithm.

of the transition from frame i to frame i+ 1. It should be noticed
that not all composite frames have these three regions. According
to the actual condition, some composite frames may have fewer
or more blurred or unblurred regions.

Algorithm 2 presents how to separate these regions based
on the color references in the frame border. Recall that frame
borders change from Red (255,0,0) to Green (0,255,0) to Blue
(0,0,255), and then wrap around to Red (255,0,0) again. Hence,
any two consecutive frames should have one RGB channel
changing from 0 to 255, one channel from 255 to 0, and the
other unchanged. As shown in the right panel of Fig. 6, we
plot three curves for RGB channels where the x-axis depicts the
index and the y-axis is the RGB value. All curves are smoothed
using polynomial curve fitting [1] to remove noise. The curve
with the lowest value (i.e., unchanged channel) is omitted. The
algorithm calculates the absolute value of the difference between
the other two channels, i.e., δ = |Bi.G−Bi.R|. Next, we find
pairs of two points between which the difference is greater than
a predefined threshold, such as a pair of P1 and P2 and a pair
of P3 and P4. By connecting two end points of these pairs, we
can separate the composite frame into different regions. The
area surrounded by P1, P2, P3, and P4 is a blurred region, and
others are unblurred regions. Note that this method also works
for cutting frames mixed by more than two frames.

The next step is to determine the ID for each separated region.
Recall that we have a 1-bit difference in the ID due to the use of
Gray Code [2]. If such a difference is located in the unblurred
region, we can easily determine the IDs for composite frames.
For example, given the decoded ID in the composite frame
is i and the difference bit is located between P1 and P2, the
composite frame consists of frames i− 1 and i. If the difference
bit is located between P3 and P4, the composite frame consists
of frames i and i+ 1. However, it is complicated if the difference
is located in blurred regions. Suppose the decoded ID is i and
the difference bit is in a blurred region. We will check how the
frame border changes its color to determine whether i belongs
to the new frame or the old one. For example, if imod 3 = 1 and
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Algorithm 2: Mixture Separation Algorithm.

the border of the composite frame changes from red to green,
we infer that i is the new frame’s ID. However, if the decoded
ID i is the same but the border changes from green to blue, i
should belong to the old frame.

C. Data Recovery Mechanism

Viterbi-Based Inference Scheme: Determining the encoded
data for a QR module in an unblurred region is relatively easy.
For each RGB channel, if the observed value is closer to 0
than 255, the encoded bit is 1; Otherwise, it is 0. However, we
may observe an intermediate value between 0 and 255 for QR
modules in a blurred region. No matter how large or small is
this intermediate value, it is difficult to determine whether such
a value is during the transition from 0 to 0, 0 to 255, 255 to 0,
or 255 to 255.

In RescQR, we rely on the color references in the frame border
to infer the exact transition. Since reference squares are scanned
by the rolling shutter at different time points, some squares are
faster to reach the next color than others. As we know the exact
colors before and after the transition, the value of each reference
square becomes a good measure of the transition speed. Suppose
the frame border changes from (255,0,0) to (0,255,0). If we
observed (x, y, z) for a reference square in the border, it is
inferred that the transition from 255 to 0 has finished by 255−x

255
and the transition from 0 to 255 has finished by y

255 at that
location. By connecting pairs of reference squares with similar
values, we can draw multiple contour lines as shown in Fig. 7. In
this figure, a composite frame has its border changing from red
to green and all QR modules changing from white to black.
We observed that all QR modules located on a contour line
had a similar transition speed which can be estimated by two
intersected reference squares. Motivated by this observation,
we design a Viterbi-based approach to infer data blocks blurred
regions based on the reference squares in the frame border. The
detail is described in Algorithm 3 as follows:

Given a QR module, we first leverage Algorithm 2 to decide
its region. If such a module is located in a blurred region, we

Fig. 7. Illustration of contour lines used to measure transition speed.

Algorithm 3: Viterbi-Based Data Recovery.

derive the slope of the contour line that passes through such
a block. Two intersections at the frame border are averaged to
indicate the transition speeds from 255 to 0 (down) and 0 to
255 (up), denoted as Rd and Ru, respectively. Next, we adopt a
Viterbi-like algorithm [9], [11] to infer the exact value before and
after the transition with the maximum a posteriori probability.
As shown in Fig. 8, the inference is performed per RGB channel.
Each channel is built with an individual trellis, where vertices
represent black and white colors and edges represent the color
transition between consecutive frames. Suppose the observed
value of a QR module in frame i is denoted as Oi and the
transition speeds at that location are Rd

i and Ru
i . By following

lines 6 to 9 in the algorithm, we estimate the “error” between
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Fig. 8. Illustration of our Viterbi-based inference for data recovery in RGB
channels.

Fig. 9. Illustration of inter-frame assembling via a data cube.

the observed transition and the actual transition from 0 to 0, 0
to 255, 255 to 0, or 255 to 255.

This error is accumulated as the evolution of the state machine
in the trellis. Our goal is to find the shortest path with the minimal
sum of errors out of all path combinations. We leverage the
Dynamic Programming technique to accelerate the process. The
solid line in the example shows an example path. The restored
data is {0 → 255 → 0 → 0}. To prevent the computation from
growing too complex, our algorithm starts to find the Viterbi
path [11] when the number of blocks reaches a predefined
threshold.

Inter-Frame Assembling: After decoding QR modules in both
blurred and unblurred regions and their belonged frames, the
receiver assembles bits into a data cube as shown in Fig. 9 to
restore the original data transmitted by the sender. Each data
panel in the cube represents a single RGB channel of a QR
code displayed on the screen, where some bits may be directly
filled from non-composite video frames or unblurred regions in
composite frames after mixture separation, and some may be
inferred from blurred regions using the proposed Viterbi-based
method. When enough bits on a data panel have been received,
the encoded parity bits are used to verify the correctness of these
bits.

Since the transmitter displays all QR codes repeatedly in a
carousel mode, if the receiver missed some positions in the cube,

he still has a chance to obtain them in the next round. Also,
some positions may be filled in multiple rounds. In that case,
we update the cube with a mean value. However, it is likely that
some positions might be lost several times due to unpredicted
reasons, the receiver attempts to guess a value based on the
same position in preceding and succeeding frames. To prevent
errors from occurring in a fixed place, the sender will shuffle the
starting frame of the sequence (note that the Gray-coded ID is
not affected). Eventually, the receiver will report receiving all
information until the data cube is completed successfully.

D. Auto-Configuration Mode of RescQR

The parameters of a QR code such as color space, version,
and error correction level play an important role in determining
the data capacity (i.e., how many frames are needed to transfer
the data), and further affect the throughput of the proposed SCC
system. For example, if the distance between the sender and
receiver is close, we can increase the capacity by using RGB
colors and more modules for each QR code. However, the sender
typically uses a fixed configuration, because he does not know
where the receivers are. In RescQR, we propose a new way of
adjusting the parameters of QR codes adaptively based on the
estimated distance between the sender and receivers with the
help of a front camera. If no receivers are detected before data
transmission, the sender uses back the default configuration. If
more than one receiver is detected, the longest distance is used.
Note that this is an optional mode that is only supported by
the sender with a front camera (e.g., smartphones). A rough
estimation of the distance is enough for RescQR. Measuring an
accurate distance such as [5] within an image is out of the scope
of this paper.

With computer vision and deep learning techniques, the
sender attempts to recognize the receivers’ smartphones within
a captured image. If detected, the outline and category of smart-
phones are derived. Based on the assumption that smartphones
have a reasonably similar size, we can estimate the distance to
a recognized device by computing the scale of the length/width
of that device. But this demands at least a reference distance
denoted by D with a known size a× b of the smartphone.
Fortunately, this reference model can be trained offline once
and is free to use later. We use YOLO and ImageNet for object
detection and recognition. The bounding boxes of the objects
are extracted from the image, and the outline of the smartphone
is determined by the Gaussian edge detection algorithm and
Hough line detection [8]. As shown in Fig. 10(a), if the phone is
not tilted, the size of the phone a× b in the captured image can
be measured by the pixel size of the bounding box x× y.

However, a difficult problem is that the recognized smart-
phone inside the bounding box is tilted, as users may hold
their smartphones freely when taking videos. Then, the direct
use of the bounding box to estimate the distance will cause
estimation errors. To address this problem, we define the tilted
angle between the bounding box and the phone in the image as
α. The size of the box is x′ × y′. Equation (2) is used to calculate
a′ and b′ of the phone, respectively.

a′ ∗ sinα+ b′ ∗ cosα = y′
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Fig. 10. The schematic of estimating the length and width of the phone.

a′ ∗ cosα+ b′ ∗ sinα = x′ (2)

then

α = arctan
c− k

1− c ∗ k (3)

where c = x′
y′ , a

b = a′
b′ = k. We can substitute back to the original

(2) to replace α to calculate the values of a′ and b′.
Given the pixel width a and length b of the phone at the

reference distance D, the actual distance D′ is estimated by
the following formula:

f =
2 ∗D ∗ (a+ b)

C
=

2 ∗D′ ∗ (a′ + b′)
C

D′ =
D ∗ (a′ + b′)

a+ b
,

where f is the focal length, and C/2 is half of the perimeter of
the captured image.

Next, the relationship between the distance and the optimal
configuration is rule-based and set heuristically based on our
extensive experiments (see Section 4.6 for detail). In general,
long distances mean a monotonous color space, a high error
correction level, and a low QR code version for reliable data
transmission. For example, in the transmission distance less than
50 cm, RescQR uses RGB QR codes, the error correction level of
12.5%, and the QR version equal to 15. At a distance of 110 cm
or further, RescQR set the black and white QR codes with 25%
error correction level and a QR version number of 7.

IV. IMPLEMENTATION AND EVALUATION

A. System Implementation

A prototype of RescQR system was implemented under An-
droid 10.0 (API 29), but compatible with all Android devices
with Android 8.1 (API 27) or later. The video capture and image
analysis are performed using Android’s CameraX library.

On the Transmitter Side, we adopt open-source ZXing [24]
to generate static QR codes with the proposed frame border and
then invoke the FFmpeg APIs to play the QR video composed
of the generated QR codes on the screen. All frames in the video

Fig. 11. Experimental setup of Mobile-to-Mobile and PC-to-Mobile using
RescQR.

are organized in a ring. When finishing playing the video once,
we randomly pick a new starting frame to play. Again, the goal
of this step is to prevent the constant errors occurring in periodic
frames.

On the receiver side, the camera is set to non-blocking mode,
where the latest image is always cached into an image buffer
while the application analyzes the previous image. To minimize
the processing delay, the app was implemented with a thread pool
and shadow buffering technique. The receiver needs to perform
several tasks, including extracting frame borders and decoding
frames. In our implementation, tasks were executed parallelly
on multi-cores, and the multi-thread communication was im-
plemented by Handler/Message mechanism. To further increase
the frame rate, we adjusted the light threshold of the camera
interface and disabled the camera’s autoexposure routine. Note
that many Android Phones can only support YUV420 and the
YUV-RGB conversion involves a high computation load. In that
case, we use OpenCV to convert the YUV image into RGB color
space.

As a comparison, we also implemented a baseline system,
where each raw frame of the captured video is directly decoded
by ZXing without any technique proposed in RescQR.

B. Experimental Methodology

Experiment Settings: The implemented prototype was tested
with commercial computer monitors and smartphones in two
scenarios: Monitor-to-Mobile and Mobile-to-Mobile as shown
in Fig. 11. In the former scenario, we used a Dell E2420H 24-
inch LED monitor as the transmitter, which supports a 60 Hz
refresh rate along with a 1920 × 1080 screen resolution. The
receiver includes Xiaomi Mi 8, OnePlus7, and Huawei P30 pro
smartphones. All phones have a 6 inches display with a 60 Hz
refresh rate. Except Xiaomi Mi 8 which has 1080 × 2248 pixels,
other phones have 1080× 2340 resolution. In the latter scenario,
smartphones were tested as either a transmitter or a receiver
alternatively. Unless otherwise stated, the display rate is set to
30fps, and the capture rate is 60fps at 1080p resolution. The
distance between the transmitter and the receiver is 45 cm. The
version of QR Code is set to 19 (81 × 81 modules). The screen
brightness uses the factory value. The angle between the phone
and the screen is zero. The error correction level is configured
to 25%, and RGB colors are used to encode data.
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TABLE I
OVERLL COMPARISON OF RESCQR AND MOST RECENT APPROACHES

Fig. 12. Goodput achieved by RescQR and state-of-the-art systems at different
display rates.

Performance Metrics: All the experiments were conducted
in terms of goodput, throughput, and block error rate (BER).
Goodput is the amount of useful information delivered to the
receiver per unit of time. We calculate the goodput by the bit
size of data divided by the total delivery time that the receiver
successfully receives the data. Throughput is the amount of all
received bits including protocol overhead bits and duplicated
bits per unit of time. The BER is the number of incorrect QR
modules divided by the total number of modules in a received
frame.

Evaluation Goals: With the above experiment settings and
performance metrics, we evaluated the performance of RescQR
by answering the following questions:

1) Q1: Can RescQR improve the state-of-the-art SCC sys-
tems?

2) Q2: What is the performance of RescQR in various envi-
ronmental factors and conditions?

3) Q3: Is the auto-configuration mode effective to improve
RescQR in practice?

C. Performance Comparison

To answer Q1, we compared the performance of RescQR to
the state-of-the-art SCC systems. As we have no access to the
source code of these systems, we use the results reported in their
papers and evaluate RescQR in the same settings for comparison.

Fig. 12 shows the results of the proposed RescQR compared
to selected SCC systems in terms of the goodput at a fixed
capture rate of 60 Hz and different display frame rates. The
reason we only compared Lightsync [12], RDCode [29], and
MegaLight (ML) [38] is that the selected approaches all reported
the experiment results with different display rates in their papers.

For other approaches, we could only compare them at specific
frame rates as shown in Table I. In Fig. 12, the results of RescQR
were averaged over 10 experiments at each frame rate. We find
that the goodput of all approaches continues increasing when
the display rate is low. After the display rate exceeds 20fps, the
goodput of Lightsync and RDCode starts to drop due to the effect
of composite frames. With the help of Megalight (ML), both
RDCode and Lightsync could increase the goodput by 12-28fps
but failed to deliver any information when the display-capture
ratio is greater than 1/2 (i.e., when the display rate exceeds
30 Hz). Our approach achieves slightly better performance in
low frame rates and much better performance in high frame
rates due to the ability to recover data from composite frames.

Again, RescQR is not limited to using QR codes only. If
advanced coding schemes such as COBRA [10] and Rainbar [31]
replace QR codes to carry information, our approach is expected
to achieve a higher goodput in theory. That is because QR codes
are designed for sparse data communication in a reliable way,
but not for bulky data. Simply, if the full rectangular area rather
than the square size of the screen is used, the goodput reported
here will get further increased. Even in this case, RescQR has a
better goodput than compared approaches.

Table I shows the compared results of RescQR with the most
recent SCC systems in terms of throughput, goodput, and other
features. Note that these approaches may have different goals
from ours. For example, DeepLight [27], ChromeCode [40], and
AirCode [22] focus on hidden screen-camera communication
without interfering experience of the audience watching actual
video content. RainBar+ [43] and ERSCC [41] aim to build a
high-goodput peer-peer communication system that has real-
time feedback channels. Due to the design of dedicated frame
boards and Viterbi-based data recovery mechanism, RescQR
has an averaged throughput/goodput of 804kbps/402 when the
display rate equals 31fps and the distance is 50 cm but other
settings are default. The result has nearly 24% improvement
over RainBar+, as well as 3x over ChromeCode and 2x over Air-
Code even though the frame rates are much lower for RescQR.
Although AirCode can achieve a higher throughput of around
1 Mbps, its effective rate (i.e., goodput) is lower than RescQR.
It is seen that our approach outperforms the state-of-the-art SCC
systems even with standard QR codes.

D. Parameter Study

To answer Q2 we conducted experiments to study the im-
pacts of various factors and conditions on RescQR, including
distances, angles, display types, ambient luminance, and more.
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Fig. 13. Parameter study of RescQR in various enviromental conditions and factors.

For each factor, we only adjusted such a factor with others
unchanged.

Impact of Distance: Fig. 13(a) shows the performance of
RescQR in the distance from 50 cm to 80 cm. Note that we
omit the results for distances less than 50 cm because their
performance does not vary much. It is seen that the goodput of
RescQR using color QR codes drops by 20%–60% with distance
increased, while RescQR using black-and-white QR codes keeps
a stable performance. That is because when the camera is close
to the screen, the image sensor has a high chance to recognize the
color correctly. Recall that each QR module in RescQR contains
3 bits of information in an RGB color space. Thus, the receiver
needs to correctly recognize eight different colors for decoding
the data correctly. By contrast, if each module is either dark
or light, the receiver only needs to distinguish two colors. As
the distance between the transmitter and receiver increases, the
receiver has fewer pixel samples per QR module as if the module
got smaller. Correctly recognizing eight colors may occur more
errors than just identifying two colors.

Impact of Angle: Fig. 13(b) shows the goodput of RescQR
with relative angles between the phone and the screen adjusted
from 0° to 90° in clockwise order when the display rate and
capture rate are fixed at 30fps and 60fps, respectively. To
demonstrate the performance gain, we compared RescQR to the
baseline (i.e., QR codes enhanced by RescQR v.s. standard QR
codes). As the angle changes, both the captured QR codes and
mixture patterns become irregular. To solve these issues, our ap-
proach relies on functional patterns (see Section II for alignment
and distortion compensation, while the skewed mixture patterns
are handled by the proposed mixture separation mechanism. Due
to this design RescQR achieves about 3x-4x improvement over
the baseline in most cases.

Impact of Display Type: We compared the Dell monitor (LCD)
to different phone screens (OLED) and the results are shown in
Fig. 13(c). We find that RescQR has slightly better performance
on OLED screens over LCD screens. That is because OLED
screens typically have brighter colors and less response time
when changing from one color to another color. Thus, the
receiver will capture smaller blurred bands and have a high
chance to recognize the color in each module correctly. Note
that we do not distinguish different phones in the figure because
they all have similar performance.

Impact of Screen Brightness: Fig. 13(d) shows the perfor-
mance of RescQR with the screen brightness adjusted from 0
to 100%. A brighter screen typically leads to more accurate
color recognition, as the BER of the baseline decreases with the
increasing screen brightness. Compared to the baseline, RescQR
improves the BER and goodput, especially in the case of low
brightness.

Impact of Light: Ambient luminance plays an important role
in scanning QR codes. Fig. 13(e) shows the performance of
RescQR under three real-world lighting scenarios, including
a dark room, a lab with lamps, and outdoors with sunlight.
We measured the ambient luminance for each scenario with
a light meter app on the phone: dark room (0 lux), lab with
an incandescent lamp (200 lux), and outdoor (1000 lux). From
the figure, we find that the impact of ambient luminance on
goodput is negligible, although the throughput decreases. That
is because the Viterbi-based inference algorithm indeed helps
data recovery.

Impact of Error Correction Level: Error correction level is
a parameter of QR codes. We studied its impact by comparing
RescQR to the baseline with the error correction level ranging
from 12.5% to 25%. For each level, we evaluated both RescQR
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TABLE II
RELATIVE ERRORS OF RESCQR AT DIFFERENT DISTANCES

and the baseline with different display rates. It is worth noting
that the experiments were conducted with the capture rate fixed
at 30fps. As shown in Fig. 13(f), when the display-capture
ratio is less than 1/2, there is no gain between RescQR and the
baseline both with the error correction level of 25%, because the
Reed-Solomon codec alone is enough to correct all transmission
errors. However, in face of a high display-capture ratio large
error correction level is insufficient, because composite frames
dominate the captured frames. Our approach can achieve up to
3.5x goodput over the baseline. It is also obvious for the error
correction level of 12.5%.

E. Effectiveness of Auto-Configuration Mode

To answer Q3, we further evaluated the auto-configuration
mode of RescQR in terms of the accuracy of our distance
estimation and the performance improvement gained from the
adaptive configuration according to the estimated distance.

Accuracy of Distance Estimation: We conducted extensive
experiments with Xiaomi Mi 8 as the sender and other phones
as the receiver. The dimensions of Mi 8 are 155 × 75 mm and
the tested distance between the sender and receiver ranges from
30 cm to 130 cm. The relative error (RE) within 20% is deemed
as small error. If greater than 20%, the error is a large error.
Table II shows the percentage of total tests with small errors
and large errors, respectively. We find that the overall accuracy
decreases slightly with increased distances, but even at a distance
of 130 cm, we still have around 85% tests with RE less than 20%
(i.e., absolute error is less than 26 cm). It is worth noting that
RescQR does not require a high-accuracy of distance estimation.
Given that most of the estimations are within a small error range,
we can obtain the optimal QR parameters stably.

Performance Gain From Auto-Configuration: Fig. 14 shows
the goodput of RescQR in auto-configuration and fixed configu-
rations at different distances. These experiments were conducted
with default settings. The configurable parameters include color
space, error correction level, and QR version. We conclude that:
1) The color codecs can only work within a limited distance
since the receiver has more difficulty in identifying RGB col-
ors correctly at a long distance. Our experiments show that
beyond 80 cm only black-and-white QR codes could deliver
non-zero goodput. 2) For every range of distance, there exist a
dominant set of parameters (i.e., a configuration) that have the
best performance over others. For example, the configuration
of black-and-white QR codes, 25% error correction level, and
version 11 could bring the best goodput within the range from
75 cm to 100 cm. 3) The proposed auto-configuration method
is effective to improve the overall performance adaptively. If

Fig. 14. Comparison of RescQR with auto-configuration and fixed
configurations.

sticking to an inappropriate configuration, we may have a less-
utilized communication channel when the sender and receiver
are close, or cannot convey any information when the receiver
is far away from the sender.

V. RELATED WORK

Screen-Camera Communication (SCC) is a special type of
broader category of Visible Light Communication (VLC) [19],
[26], [39] and Optical-Camera communication (OCC) [25], [42].
The VLC technologies hinge on visible bands of light sources,
while the OCC technologies utilize optical image sensors as
receivers based on IR or visible bands. Compared to these tech-
nologies, SCC has many advantages, such as easy integration
with off-the-shelf smartphones and a relatively high data rate.
In this section, we mainly focus on SCC technologies, while a
comprehensive survey of VLC or OCC can be found in [3], [15],
[23].

Existing SCC technologies can be classified into two broad
categories: 1) approaches to improve data rate, allowing visible
content displayed on the screen for data transmission; and 2)
approaches to reduce user perception, focusing on the data
transmission without interfering watching experience of the
audience.

Visible Screen-Camera Communication: The goal of this di-
rection is to achieve high throughput reliably. It does not matter
whether the user notices the dedicated content displayed on the
screen. PixNet [21] designs a pioneering method of encoding
data in 2D OFDM symbols and enables data streaming between
LCD screens and cameras. COBRA [10] proposes a novel color
barcode optimized for low-complexity processing and adaptive
code block arrangement to be blur-resilient. However, these ap-
proaches suffer from rolling-shutter effects, so they are limited at
low display/capture frame rates. LightSync [12] uses interframe
coding to support asynchronous communication, but it limits the
colors to black and white. Styrofoamt [18] proposes a coding
scheme for resolving inter-symbol interference by inserting
blank frames into the transmission pattern but at the cost of
reducing the throughput. To further improve the throughput of
SCC in practice, RDCode [29] contributes a robust dynamic code
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design with multi-level error correction schemes. RainBar [31]
and its extended version RainBar+ [43] make improvements on
block locating and frame synchronization to get better stability
and capacity in transmission. SoftLight [7] designs a scheme
with automatic adaptation of transmission rates in diverse sce-
narios and shows the improved overall goodput. By leveraging
machine learning technologies, MMCode [4] designs a semi-
supervised Gaussian Mixture Model (GMM) algorithm, which
improves the accuracy of recognizing colors. Meglight [38] uses
a Random Forest-based model to support robust decoding with
pre-inserted training frames. In ERSCC [41], a self-restoration
coding and an additional feedback channel are proposed to
increase coding efficiency.

RescQR differs from existing works in that our approach
provides an orthogonal direction to resolve the lack of syn-
chronization between the screen and camera frame rates. When
encountering mixed frames, RescQR attempts to recover data
according to historical information with best efforts rather than
just discarding the frames with error.

Hidden Screen-Camera Communication: In this direction,
pioneering works such as InFrame [30] and its extended ver-
sion InFrame++ [28] leverage the spatial-temporal flicker-fusion
property and CDMA-like modulation to deliver data streams
without interfering with watching experience of the audience.
HiLight [16] leverages the orthogonal transparency (alpha)
channel to embed bits into pixel translucency changes without
modifying pixel color values. TextureCode [20] improves in-
visibility by adaptive embedding based on video texture. Chro-
maCode [40] improves code invisibility by modifying lightness
in uniform color space and achieves full imperception. Deep-
Light [27] enhances reliable data transmission rates of hidden
SCC in diverse real-world conditions by selectively modulating
the intensity of only the Blue channel and incorporating ML
models in the decoding pipeline. To further improve the data rate,
AirCode [22] takes the complementary advantages of video and
audio channels and adopts visual odometry for accurate screen
detection.

The above works aim at invisible communication with a
screen-camera link as a side channel. On the contrary, RescQR
focuses on reliable data recovery to achieve a higher data rate
using existing coding schemes instead of the imperception to
human eyes.

VI. CONCLUSION

In this paper, we present RescQR, an end-to-end SCC system
that achieves a reliably high goodput by recovering data from
composite video frames without the help of new coding schemes.
Due to the combined effects of rolling shutter and display refresh
rate, the problem of frame composition is inevitable for SCC
systems that pursue high throughput using a high display rate.
In RescQR, the receiver uses a novel mixture separation algo-
rithm coupled with a newly-designed frame border to separate
composite frames, and a novel Viterbi-based inference algorithm
to guess data from blurred areas of composite frames with
maximum posterior probability. The sender of RescQR uses a
novel auto-configuration method with the help of a front camera

to automatically adjust barcode parameters according to the esti-
mated distance between the screen and the camera. We prototype
RescQR and evaluated it by extensive experiments. The results
show that RescQR has a better goodput than previous works
even with standard QR codes. The performance is expected to be
further improved by integrating with other high-capacity coding
schemes. These innovations allow RescQR to support several
new classes of high-data-rate SCC applications via personal
mobile devices.
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